190 research outputs found

    Technologies to deliver food and climate security through agriculture

    Get PDF
    Acknowledgements D.J.B. and S.A.B. acknowledge funding from the Leverhulme Trust through a Leverhulme Research Centre Award (RC-2015-029). S.P.L. acknowledges funding from the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-SC0018420). The input of P.S. contributes to the DEVIL (NE/M021327/1) and Soilsā€Rā€GRREAT (NE/P019455/1) projects.Peer reviewedPostprin

    Convergent Cenozoic CO2 history,

    Get PDF

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 ā€œgreenhouseā€ world 290ā€“50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years

    Get PDF
    North Africa features some of the most frequently burnt biomes on Earth, including the semi-arid grasslands of the Sahel and wetter savannas immediately to the south. Natural fires are fuelled by rapid biomass production during the wet season, its desiccation during the dry season and ignition by frequent dry lightning strikes. Today, fire activity decreases markedly both to the north of the Sahel, where rainfall is extremely low, almost eliminating biomass over the Sahara, and to the south where forest biomes are too wet to burn. Over the last glacial cycle, rainfall and vegetation cover over northern Africa varied dramatically in response to gradual astronomically-forced insolation change, changes in atmospheric carbon dioxide levels, and abrupt cooling events over the North Atlantic Ocean associated with the reorganisation of Meridional Overturning Circulation (MOC). Here we report the results of a study into the impact of these climate changes on fire activity in northern African over the last 50,000 years (50 kyr). Our reconstructions come from marine sediments with strong age control that provide an uninterrupted record of charcoal particles exported from the African continent. We studied three sites on a latitudinal transect along the northwest African margin between 21 and 9Ā°N. Our sites exhibit a distinct latitudinal relationship between past changes in rainfall and fire activity. At the southernmost site (GeoB9528-3, 9Ā°N), fire activity decreased during intervals of increasing humidity, while our northernmost site (ODP Site 658, 21Ā°N) clearly demonstrates the opposite relationship. The site in the middle of our transect, offshore of the present day southern Sahel today (GeoB9508-5, 15Ā°N), exhibits a ā€œGoldilocksā€ relationship between fire activity and hydroclimate, wherein charcoal fluxes peak under intermediate rainfall climate conditions and are supressed by transition to more arid or more humid conditions. Our results are remarkably consistent with the predictions of the intermediate fire-productivity hypothesis developed in conceptual macroecological models and supported by empirical evidence of modern day fire activity. Feedback processes operating between fire, climate and vegetation are undoubtedly complex but temperature is suggested to be the main driver of temporal change in fire activity globally, with the precipitation-evaporation balance perhaps a secondary influence in the Holocene tropics. However, there is only sparse coverage of Africa in the composite records upon which those interpretations are based. We conclude that hydroclimate (not temperature) exerted the dominant control on burning in the tropics of northern Africa well before the Holocene (from at least 50 ka).publishedVersio

    Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes

    Get PDF
    Field studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative treeā€“fungus mycorrhizal partnerships. Trees were grown in either a simulated past CO2 atmosphere (1500 ppm)ā€”under which EM fungi evolvedā€”or near-current CO2 (450 ppm). We report a direct linkage between photosynthate-energy fluxes from trees to EM and AM mycorrhizal mycelium and rates of calcium silicate weathering. Calcium dissolution rates halved for both AM and EM trees as CO2 fell from 1500 to 450 ppm, but silicate weathering by AM trees at high CO2 approached rates for EM trees at near-current CO2. Our findings provide mechanistic insights into the involvement of EM-associating forest trees in strengthening biological feedbacks on the geochemical carbon cycle that regulate atmospheric CO2 over millions of years

    Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    Get PDF
    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history

    Simulating carbon capture by enhanced weathering with global croplands: an overview of key processes highlighting areas of future model development

    Get PDF
    Enhanced weathering (EW) aims to amplify a natural sink for CO2 by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2 into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas (GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidification in croplands and how the soil weathering CO2 sink is represented in models. Mathematical models capturing the dominant processes and human interventions governing cropland soil chemistry and GHG emissions neglect weathering, while most weathering models neglect agricultural processes. We discuss current approaches to modelling EW and highlight several classes of model having the potential to simulate EW in croplands. Finally, we argue for further integration of process knowledge in mathematical models to capture feedbacks affecting both longer-term CO2 consumption and crop growth and yields
    • ā€¦
    corecore