329 research outputs found

    Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1

    Get PDF
    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA–methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure for subsequent non-CG methylation

    Distinct Mechanisms Determine Transposon Inheritance and Methylation via Small Interfering RNA and Histone Modification

    Get PDF
    Heritable, but reversible, changes in transposable element activity were first observed in maize by Barbara McClintock in the 1950s. More recently, transposon silencing has been associated with DNA methylation, histone H3 lysine-9 methylation (H3mK9), and RNA interference (RNAi). Using a genetic approach, we have investigated the role of these modifications in the epigenetic regulation and inheritance of six Arabidopsis transposons. Silencing of most of the transposons is relieved in DNA methyltransferase (met1), chromatin remodeling ATPase (ddm1), and histone modification (sil1) mutants. In contrast, only a small subset of the transposons require the H3mK9 methyltransferase KRYPTONITE, the RNAi gene ARGONAUTE1, and the CXG methyltransferase CHROMOMETHYLASE3. In crosses to wild-type plants, epigenetic inheritance of active transposons varied from mutant to mutant, indicating these genes differ in their ability to silence transposons. According to their pattern of transposon regulation, the mutants can be divided into two groups, which suggests that there are distinct, but interacting, complexes or pathways involved in transposon silencing. Furthermore, different transposons tend to be susceptible to different forms of epigenetic regulation

    Cooperative activity of DNA methyltransferases for maintenance of symmetrical and non-symmetrical cytosine methylation in Arabidopsis thaliana

    Get PDF
    Maintenance of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation, and DRM1/2 and CMT3 act redundantly to enforce non-CG methylation. RPS, a repetitive hypermethylated DNA fragment from Petunia hybrida, attracts DNA methylation when transferred into Petunia or other species. In Arabidopsis thaliana, which does not contain any RPS homologues, RPS transgenes are efficiently methylated in all sequence contexts. To test which DNA methylation pathways regulate RPS methylation, we examined maintenance of RPS methylation in various mutant backgrounds. Surprisingly, CG methylation was lost in a drm1/2/cmt3 mutant, and non-CG methylation was almost completely eliminated in a met1 mutant. An unusual cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG and non-CG methylation in RPS. Other unusual features of RPS methylation are the independence of its non-CG methylation from the RNA-directed DNA methylation (RdDM) pathway and the exceptional maintenance of methylation at a CCmTGG site in some epigenetic mutants. This is indicative of activity of a methylation system in plants that may have evolved from the DCM methylation system that controls CCmWGG methylation in bacteria. Our data suggest that strict separation of CG and non-CG methylation pathways does not apply to all target regions, and that caution is required in generalizing methylation data obtained for individual genomic regions

    Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G

    Get PDF
    Host genomes have adopted several strategies to curb the proliferation of transposable elements and viruses. A recently discovered novel primate defense against retroviral infection involves a single-stranded DNA-editing enzyme, APOBEC3G, that causes hypermutation of HIV. The HIV-encoded virion infectivity factor (Vif) protein targets APOBEC3G for destruction, setting up a genetic conflict between the APOBEC3G and Vif genes. This kind of conflict leads to rapid fixation of mutations that alter amino acids at the protein–protein interface, referred to as positive selection. We show that the APOBEC3G gene has been subject to strong positive selection throughout the history of primate evolution. Unexpectedly, this selection appears more ancient than, and is likely only partially caused by, modern lentiviruses. Furthermore, five additional APOBEC genes in the human genome appear to be engaged in similar genetic conflicts, displaying some of the highest signals for positive selection in the human genome. Despite being only recently discovered, editing of RNA and DNA may thus represent an ancient form of host defense in primate genomes

    Transgenerational Inheritance and Resetting of Stress-Induced Loss of Epigenetic Gene Silencing in Arabidopsis

    Get PDF
    Plants, as sessile organisms, need to sense and adapt to heterogeneous environments and have developed sophisticated responses by changing their cellular physiology, gene regulation, and genome stability. Recent work demonstrated heritable stress effects on the control of genome stability in plants—a phenomenon that was suggested to be of epigenetic nature. Here, we show that temperature and UV-B stress cause immediate and heritable changes in the epigenetic control of a silent reporter gene in Arabidopsis. This stress-mediated release of gene silencing correlated with pronounced alterations in histone occupancy and in histone H3 acetylation but did not involve adjustments in DNA methylation. We observed transmission of stress effects on reporter gene silencing to non-stressed progeny, but this effect was restricted to areas consisting of a small number of cells and limited to a few non-stressed progeny generations. Furthermore, stress-induced release of gene silencing was antagonized and reset during seed aging. The transient nature of this phenomenon highlights the ability of plants to restrict stress-induced relaxation of epigenetic control mechanisms, which likely contributes to safeguarding genome integrity

    Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing

    Get PDF
    RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA–triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA–mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA–directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts
    corecore