17 research outputs found
DĂ©ficit de atenciĂłn e hiperactividad en adultos con adicciĂłn a sustancias: ÂżTDAH o sĂndrome secundario al abuso de sustancias?
Existe un cuerpo de investigaciĂłn, sometido a fuertes intereses comerciales, para considerar la existencia del trastorno por dĂ©ficit de atenciĂłn e hiperactividad (TDAH) en adultos, que informa de presuntas prevalencias muy elevadas en poblaciĂłn adicta. Otros estudios sugieren cifras mucho menores y mĂĄs acordes con las observadas en poblaciĂłn infantil, utilizando todos, y no sĂłlo algunos, de los criterios diagnĂłsticos establecidos. Puesto que el diagnĂłstico en el momento actual debe ser meramente sindrĂłmico, los sĂntomas manifestados por los afectados son de interĂ©s crucial. A partir de diversos autoinformes de sĂntomas de TDAH (ASRS de la OMS), de disfunciĂłn ejecutiva (DEX, FrSBe) y de condiciones asociadas (MCMI-II, DII-Short), los datos del presente estudio muestran que es mĂĄs probable que los sĂntomas de inatenciĂłn e hiperactividad observados en sujetos adictos en tratamiento se deban a efectos derivados de la adicciĂłn que a condiciones mĂłrbidas previas al abuso de sustancias
Sensitivity of South American tropical forests to an extreme climate anomaly
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02 ± 0.37 Mg C ha â1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Taking the pulse of Earth's tropical forests using networks of highly distributed plots
Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo AlarcĂłn, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, RenĂ© GuillĂ©n Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, FabrĂcio Alvim Carvalho, FlĂĄvio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz AragĂŁo, Ana Claudia AraĂșjo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, FabrĂcio Baccaro, PlĂnio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, JosĂ© LuĂs Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, FlĂĄvia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, JosĂ© Romualdo de Sousa Lima, MĂĄrio do EspĂrito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila LaĂs Farrapo, LetĂcia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. GarcĂa, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, IĂȘda LeĂŁo do Amaral, Carolina Levis, Antonio S. Lima, MaurĂcio Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, SalomĂŁo Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina MĂŒller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de AraĂșjo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo JosĂ© Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, JosĂ© Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael SalomĂŁo, FlĂĄvia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana SimĂŁo Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima CĂ©lia GuimarĂŁes Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure SonkĂ©, Hermann Taedoumg, Lise Zemagho, Sean Thomas, FidĂšle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Ălvarez-DĂĄvila, Juan Carlos AndrĂ©s Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon CalderĂłn, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando GarcĂa, Alejandro GĂłmez, Roy GonzĂĄlez-M., Ălvaro IdĂĄrraga-PiedrahĂta, Eliana Jimenez, RubĂ©n Jurado, Wilmar LĂłpez Oviedo, RenĂ© LĂłpez-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen PĂ©rez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin RodrĂguez, Gina M. Rodriguez M., AgustĂn Rudas, Pablo Stevenson, MarkĂ©ta ChudomelovĂĄ, Martin Dancak, Radim HĂ©dl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene BĂĄez, Carlos CĂ©ron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice BĂ©nĂ©det, Wemo Betian, Vincent Bezard, Damien Bonal, JerĂŽme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas LabriĂšre, PĂ©trus Naisso, Maxime RĂ©jou-MĂ©chain, Plinio Sist, Lilian Blanc, Benoit Burban, GĂ©raldine Derroire, AurĂ©lie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, FidĂšle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel DurĂĄn Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno HĂ©rault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen ArĂ©valo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt GarcĂa Villacorta, Karina Garcia Cabrera, Diego GarcĂa Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, EurĂdice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy NĂșñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, JosĂ© Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio RĂos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Ăñigo Granzow-de la Cerda, Manuel MacĂa, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf BĂĄnki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel HernĂĄndez, Rafael Herrera FernĂĄndez, Hirma RamĂrez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra
Procedimiento de conservaciĂłn de macedonia de frutas
Referencia OEPM: P9902447.-- Fecha de solicitud: 08/11/1999.-- Titulares: Consejo Superior de Investigaciones CientĂficas (CSIC), Universidad Complutense de Madrid.El objeto de la invenciĂłn es aplicar la alta presiĂłn a producto troceado de frutas. El procedimiento es el siguiente: las frutas se lavan, pelan y trocean, a continuaciĂłn se sumergen en una soluciĂłn azucarada a la que se añade acido ascĂłrbico, como antioxidante
natural. Se llenan recipientes de plĂĄstico con la mezcla de fruta y soluciĂłn, y se cierran hermĂ©ticamente. A continuaciĂłn, se someten a la presiĂłn de 400 MPa durante 30 min. a 5ÂșC. La temperatura de 5ÂșC es importante ya que las cualidades sensoriales de las frutas se mantienen mejor. Una vez tratadas las muestras se conservan refrigeradas (5ÂșC), durante
varias semanas.Peer reviewe
A choline-evoked [Ca2+]c signal causes catecholamine release and hyperpolarization of chromaffin cells
In bovine chromaffin cells fast-superfused with Krebs-HEPES solution containing 1â2 mM Ca2+, 5 s pulses of choline (1â10 mM), elicited catecholamine secretory responses that were only ~10% of those evoked by ACh (0.01â0.1 mM). However, in high-Ca2+ solutions (10â20 mM) the size of the choline secretory responses approached those of ACh. The choline responses (10 mM choline in 20 mM Ca2+, 10Cho/20Ca2+) tended to decline upon repetitive pulsing, whereas those of ACh were well maintained. The confocal [Ca2+]c increases evoked by 10Cho/20Ca2+ were similar to those of ACh. Whereas 10Cho/20Ca2+ caused mostly hyperpolarization of chromaffin cells, 0.1ACh/20 Ca2+ caused first depolarization and then hyperpolarization; in regular solutions (2 mM Ca2+), the hyperpolarizing responses did not show up. In Xenopus oocytes injected with mRNA for bovine α7 nicotinic receptors (nAChRs), 10Cho/20 Ca2+ fully activated an inward current; in oocytes expressing α3ÎČ4, however, the inward current elicited by choline amounted to only 4% of the size of α7 current. Our results suggest that choline activates the entry of Ca2+ through α7 nAChRs; this leads to a cytosolic concentration of calcium ([Ca2+]c) rise that causes the activation of nearby Ca2+-dependent K+ channels and the hyperpolarization of the chromaffin cell. This response, which could be unmasked provided that cells were stimulated with high-Ca2+ solutions, may be the underlying mechanism through which choline exerts a modulatory effect on the electrical activity of the chromaffin cell and on neurotransmitter release at cholinergic synapses.This study has been supported by grants to A.G.G. from Programa III PRICIT grupos estratĂ©gicos de la Comunidad de Madrid/UAM; DGICYT NÂș PM99-0005 and PM99-0004; FIS No. 01/0183, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo; MCYT BFI 2003- 02722; Cartonajes La Huerta, Molina de Segura, Murcia; Spain; and FundaciĂłn La Caixa, Barcelona, Spain. M.C. was supported by grants from the Spanish Ministry of Science and Technology, BMC2002-00972, and Generalitat Valenciana, CTIDIB/2002/138 and GRUPOS03/038. J.F is a fellow of MECD, Spain, and is also supported by FundaciĂłn TeĂłfilo Hernando, Spain.Peer reviewe
Down syndrome as risk factor for respiratory syncytial virus hospitalization : A prospective multicenter epidemiological study
Respiratory syncytial virus (RSV) infection in childhood, particularly in premature infants, is associated with significant morbidity and mortality. To compare the hospitalization rates due to RSV infection and severity of disease between infants with and without Down syndrome (DS) born at term and without other associated risk factors for severe RSV infection. In a prospective multicentre epidemiological study, 93 infants were included in the DS cohort and 68 matched by sex and data of birth (±1 week) and were followed up to 1 year of age and during a complete RSV season. The hospitalization rate for all acute respiratory infection was significantly higher in the DS cohort than in the non-DS cohort (44.1% vs 7.7%, P<.0001). Hospitalizations due to RSV were significantly more frequent in the DH cohort than in the non-DS cohort (9.7% vs 1.5%, P=.03). RSV prophylaxis was recorded in 33 (35.5%) infants with DS. The rate of hospitalization according to presence or absence of RSV immunoprophylaxis was 3.0% vs 15%, respectively. Infants with DS showed a higher rate of hospitalization due to acute lower respiratory tract infection and RSV infection compared to non-DS infants. Including DS infants in recommendations for immunoprophylaxis of RSV disease should be considered
Sensitivity of South American tropical forests to an extreme climate anomaly
NERC Knowledge Exchange Fellowship (NE/V018760/1) to E.N.H.C.The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02 ± 0.37 Mg C haâ1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected.Publisher PDFPeer reviewe
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Funder: A Moore Foundation grant, Royal Society Global Challenges grant (Sensitivity of Tropical Forest Ecosystem Services to Climate Changes), CNPq grants (441282/2016-4, 403764/2012-2 and 558244/2009-2), FAPEAM grants 1600/2006, 465/2010 and PPFOR 147/2015, CNPq grants 473308/2009-6 and 558320/2009-0. European Research Council (ERC Advanced Grant 291585 â âT-FORCESâ), the Gordon and Betty Moore Foundation (#1656 âRAINFORâ, and âMonANPeruâ), the European Unionâs Fifth, Sixth and Seventh Framework Programme (EVK2-CT-1999-00023 â âCARBONSINK-LBAâ, 283080 â âGEOCARBONâ, 282664 â âAMAZALERT), the Natural Environment Research Council (NE/ D005590/1 â âTROBITâ, NE/F005806/1 â âAMAZONICAâ, E/M0022021/1 - âPPFORâ), several NERC Urgency and New Investigators Grants, the NERC/State of SĂŁo Paulo Research Foundation (FAPESP) consortium grants âBIO-REDâ (NE/N012542/1), âECOFORâ (NE/K016431/1, 2012/51872-5, 2012/51509-8), âARBOLESâ (NE/S011811/1, FAPESP 2018/15001-6), âSEOSAWâ (NE/P008755/1), âSECOâ (NE/T01279X/1), Brazilian National Research Council (PELD/CNPq 403710/2012-0), the Royal Society (University Research Fellowships and Global challenges Awards) (ICA/R1/180100 - âFORAMAâ), the National Geographic Society, US National Science Foundation (DEB 1754647) and Colombiaâs Colciencias. We thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5), the PPBio Phytogeography of Amazonia/Cerrado Transition Project (CNPq/PPBio/457602/2012-0), PELD-RAS (CNPq, Process 441659/2016-0), RESFLORA (Process 420254/2018-8), Synergize (Process 442354/2019-3), the Empresa Brasileira de Pesquisa AgropecuĂĄria â Embrapa (SEG: 02.08.06.005.00), the Fundação de Amparo Ă Pesquisa do Estado de SĂŁo Paulo â FAPESP (2012/51509-8 and 2012/51872-5), the GoiĂĄs Research Foundation (FAPEG/PELD: 2017/10267000329) the EcoSpace Project (CNPq 459941/2014-3) and several PVE and Productivity Grants. We also thank the âInvestissement dâAvenirâ program (CEBA, ref. ANR-10LABX-25-01), the SĂŁo Paulo Research Foundation (FAPESP 03/12595-7) and the Sustainable Landscapes Brazil Project (through Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, USAID, and the US Department of State) for supporting plot inventories in the Atlantic Forest sites in Sao Paulo, Brazil. L.E.O.C.A. was supported by CNPq (processes 305054/2016-3 and 442371/2019-5). We thank to the National Council for Technological and Scientific Development (CNPq) for the financial support of the PELD project (441244/2016-5, 441572/2020-0) and FAPEMAT (0346321/2021). NE/B503384/1, NE/N012542/1 - âBIO-REDâ, ERC Advanced Grant 291585 - âT-FORCESâ, NE/F005806/1 - âAMAZONICAâ, NE/N004655/1 - âTREMORâ, NERC New Investigators Awards, the Gordon and Betty Moore Foundation (âRAINFORâ, âMonANPeruâ), ERC Starter Grant 758873 -âTreeMortâ, EU Framework 6, a Royal Society University Research Fellowship, and a Leverhulme Trust Research Fellowship.The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02 ± 0.37 Mg C haâ1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Funder: A Moore Foundation grant, Royal Society Global Challenges grant (Sensitivity of Tropical Forest Ecosystem Services to Climate Changes), CNPq grants (441282/2016-4, 403764/2012-2 and 558244/2009-2), FAPEAM grants 1600/2006, 465/2010 and PPFOR 147/2015, CNPq grants 473308/2009-6 and 558320/2009-0. European Research Council (ERC Advanced Grant 291585 - 'T-FORCES'), the Gordon and Betty Moore Foundation (#1656 'RAINFOR', and 'MonANPeru'), the European Union's Fifth, Sixth and Seventh Framework Programme (EVK2-CT-1999-00023 - 'CARBONSINK-LBA', 283080 - 'GEOCARBON', 282664 - 'AMAZALERT), the Natural Environment Research Council (NE/ D005590/1 - 'TROBIT', NE/F005806/1 - 'AMAZONICA', E/M0022021/1 - 'PPFOR'), several NERC Urgency and New Investigators Grants, the NERC/State of Sao Paulo Research Foundation (FAPESP) consortium grants 'BIO-RED' (NE/N012542/1), 'ECOFOR' (NE/K016431/1, 2012/51872-5, 2012/51509-8), 'ARBOLES' (NE/S011811/1, FAPESP 2018/15001-6), 'SEOSAW' (NE/P008755/1), 'SECO' (NE/T01279X/1), Brazilian National Research Council (PELD/CNPq 403710/2012-0), the Royal Society (University Research Fellowships and Global challenges Awards) (ICA/R1/180100 - 'FORAMA'), the National Geographic Society, US National Science Foundation (DEB 1754647) and Colombia's Colciencias. We thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5), the PPBio Phytogeography of Amazonia/Cerrado Transition Project (CNPq/PPBio/457602/2012-0), PELD-RAS (CNPq, Process 441659/2016-0), RESFLORA (Process 420254/2018-8), Synergize (Process 442354/2019-3), the Empresa Brasileira de Pesquisa Agropecuaria - Embrapa (SEG: 02.08.06.005.00), the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2012/51509-8 and 2012/51872-5), the Goias Research Foundation (FAPEG/PELD: 2017/10267000329) the EcoSpace Project (CNPq 459941/2014-3) and several PVE and Productivity Grants. We also thank the "Investissement d'Avenir" program (CEBA, ref. ANR-10LABX-25-01), the Sao Paulo Research Foundation (FAPESP 03/12595-7) and the Sustainable Landscapes Brazil Project (through Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, USAID, and the US Department of State) for supporting plot inventories in the Atlantic Forest sites in Sao Paulo, Brazil. L.E.O.C.A. was supported by CNPq (processes 305054/2016-3 and 442371/2019-5). We thank to the National Council for Technological and Scientific Development (CNPq) for the financial support of the PELD project (441244/2016-5, 441572/2020-0) and FAPEMAT (0346321/2021). NE/B503384/1, NE/N012542/1 - 'BIO-RED', ERC Advanced Grant 291585 - 'T-FORCES', NE/F005806/1 - 'AMAZONICA', NE/N004655/1 - 'TREMOR', NERC New Investigators Awards, the Gordon and Betty Moore Foundation ('RAINFOR', 'MonANPeru'), ERC Starter Grant 758873 -'TreeMort', EU Framework 6, a Royal Society University Research Fellowship, and a Leverhulme Trust Research Fellowship.AbstractThe tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02â±â0.37âMgâCâhaâ1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected.</jats:p
Taking the pulse of Earth's tropical forests using networks of highly distributed plots
Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests