47 research outputs found

    A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains

    Get PDF
    Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention

    Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study

    Get PDF
    Background: Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium

    The Next PAGE in Understanding Complex Traits: Design for the Analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study

    Get PDF
    Genetic studies have identified thousands of variants associated with complex traits. However, most association studies are limited to populations of European descent and a single phenotype. The Population Architecture using Genomics and Epidemiology (PAGE) Study was initiated in 2008 by the National Human Genome Research Institute to investigate the epidemiologic architecture of well-replicated genetic variants associated with complex diseases in several large, ethnically diverse population-based studies. Combining DNA samples and hundreds of phenotypes from multiple cohorts, PAGE is well-suited to address generalization of associations and variability of effects in diverse populations; identify genetic and environmental modifiers; evaluate disease subtypes, intermediate phenotypes, and biomarkers; and investigate associations with novel phenotypes. PAGE investigators harmonize phenotypes across studies where possible and perform coordinated cohort-specific analyses and meta-analyses. PAGE researchers are genotyping thousands of genetic variants in up to 121,000 DNA samples from African-American, white, Hispanic/Latino, Asian/Pacific Islander, and American Indian participants. Initial analyses will focus on single nucleotide polymorphisms (SNPs) associated with obesity, lipids, cardiovascular disease, type 2 diabetes, inflammation, various cancers, and related biomarkers. PAGE SNPs are also assessed for pleiotropy using the “phenome-wide association study” approach, testing each SNP for associations with hundreds of phenotypes. PAGE data will be deposited into the National Center for Biotechnology Information's Database of Genotypes and Phenotypes and made available via a custom browser

    Fine-mapping of lipid regions in global populations discovers ethnic-specific signals and refines previously identified lipid loci

    Get PDF
    Genome-wide association studies have identified over 150 loci associated with lipid traits, however, no large-scale studies exist for Hispanics and other minority populations. Additionally, the genetic architecture of lipid-influencing loci remains largely unknown. We performed one of the most racially/ethnically diverse fine-mapping genetic studies of HDL-C, LDL-C, and triglycerides to-date using SNPs on the MetaboChip array on 54,119 individuals: 21,304 African Americans, 19,829 Hispanic Americans, 12,456 Asians, and 530 American Indians. The majority of signals found in these groups generalize to European Americans. While we uncovered signals unique to racial/ethnic populations, we also observed systematically consistent lipid associations across these groups. In African Americans, we identified three novel signals associated with HDL-C (LPL, APOA5, LCAT) and two associated with LDL-C (ABCG8, DHODH). In addition, using this population, we refined the location for 16 out of the 58 known MetaboChip lipid loci. These results can guide tailored screening efforts, reveal population-specific responses to lipid-lowering medications, and aid in the development of new targeted drug therapies

    Genetics of Chronic Kidney Disease Stages Across Ancestries: The PAGE Study

    Get PDF
    BackgroundChronic kidney disease (CKD) is common and disproportionally burdens United States ethnic minorities. Its genetic determinants may differ by disease severity and clinical stages. To uncover genetic factors associated CKD severity among high-risk ethnic groups, we performed genome-wide association studies (GWAS) in diverse populations within the Population Architecture using Genomics and Epidemiology (PAGE) study.MethodsWe assembled multi-ethnic genome-wide imputed data on CKD non-overlapping cases [4,150 mild to moderate CKD, 1,105 end-stage kidney disease (ESKD)] and non-CKD controls for up to 41,041 PAGE participants (African Americans, Hispanics/Latinos, East Asian, Native Hawaiian, and American Indians). We implemented a generalized estimating equation approach for GWAS using ancestry combined data while adjusting for age, sex, principal components, study, and ethnicity.ResultsThe GWAS identified a novel genome-wide associated locus for mild to moderate CKD nearby NMT2 (rs10906850, p = 3.7 × 10-8) that replicated in the United Kingdom Biobank white British (p = 0.008). Several variants at the APOL1 locus were associated with ESKD including the APOL1 G1 rs73885319 (p = 1.2 × 10-9). There was no overlap among associated loci for CKD and ESKD traits, even at the previously reported APOL1 locus (p = 0.76 for CKD). Several additional loci were associated with CKD or ESKD at p-values below the genome-wide threshold. These loci were often driven by variants more common in non-European ancestry.ConclusionOur genetic study identified a novel association at NMT2 for CKD and showed for the first time strong associations of the APOL1 variants with ESKD across multi-ethnic populations. Our findings suggest differences in genetic effects across CKD severity and provide information for study design of genetic studies of CKD in diverse populations

    Investigation of gene-by-sex interactions for lipid traits in diverse populations from the population architecture using genomics and epidemiology study

    Get PDF
    Abstract Background High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels are influenced by both genes and the environment. Genome-wide association studies (GWAS) have identified ~100 common genetic variants associated with HDL-C, LDL-C, and/or TG levels, mostly in populations of European descent, but little is known about the modifiers of these associations. Here, we investigated whether GWAS-identified SNPs for lipid traits exhibited heterogeneity by sex in the Population Architecture using Genomics and Epidemiology (PAGE) study. Results A sex-stratified meta-analysis was performed for 49 GWAS-identified SNPs for fasting HDL-C, LDL-C, and ln(TG) levels among adults self-identified as European American (25,013). Heterogeneity by sex was established when phet < 0.001. There was evidence for heterogeneity by sex for two SNPs for ln(TG) in the APOA1/C3/A4/A5/BUD13 gene cluster: rs28927680 (phet = 7.4x10-7) and rs3135506 (phet = 4.3x10-4), one SNP in PLTP for HDL levels (rs7679; phet = 9.9x10-4), and one in HMGCR for LDL levels (rs12654264; phet = 3.1x10-5). We replicated heterogeneity by sex in five of seventeen loci previously reported by genome-wide studies (binomial p = 0.0009). We also present results for other racial/ethnic groups in the supplementary materials, to provide a resource for future meta-analyses. Conclusions We provide further evidence for sex-specific effects of SNPs in the APOA1/C3/A4/A5/BUD13 gene cluster, PLTP, and HMGCR on fasting triglyceride levels in European Americans from the PAGE study. Our findings emphasize the need for considering context-specific effects when interpreting genetic associations emerging from GWAS, and also highlight the difficulties in replicating interaction effects across studies and across racial/ethnic groups

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A Portal for Access to Complex Distributed Information about Energy

    No full text
    The Digital Government Research Center (DGRC) has completed phase one of the Energy Data Collection (EDC) project. In this paper, we present the results of building and evaluating system components, along with plans for phase two of the project. Phase one focused on data about petroleum products&apos; prices and volumes, provided by the Energy Information Administration, the Bureau of Labor Statistics, and the Census Bureau, and the California Energy Commission, in the form of over 50,000 data tables. This research centers on providing dynamically planned access to multiple non-homogeneous databases and other data collections, using a query planner and a largescale (90,000-node) concept ontology and a domain model, both of which are accessed via various interfaces, including cascaded menus, a natural language question analyzer, and an ontology browser
    corecore