22 research outputs found

    Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague

    Get PDF
    该论文通过对青铜器时代的两个鼠疫杆菌分离株进行测序,深入剖析了鼠疫杆菌的历史。德国、俄罗斯、中国和瑞士等多国研究员共同参与了研究。这篇论文的第一作者是德国马克斯-普朗克研究所的考古遗传学专家Maria Spyrou。她和同事从俄罗斯墓穴中埋葬的九名古代人的牙齿样本入手,发现有两人感染鼠疫杆菌。之后,他们从这些个体中分离出距今约3800年的病原菌。在这项新研究中,研究人员利用液相捕获和Illumina鸟枪法测序技术,对青铜器时代的一名男子(RT5)的鼠疫杆菌和人类宿主序列进行测序,其中鼠疫杆菌基因组的平均覆盖度达到32倍。同时,他们还对另一名感染个体(RT6)的分离株进行测序,平均覆盖度为1.9倍。系统发育分析表明,RT5和RT6分离株是共同谱系的一部分,这个谱系的祖先是史上三次瘟疫大流行的罪魁祸首。除了众所周知的中世纪欧洲瘟疫大流行,鼠疫杆菌还曾造成公元6世纪的查士丁尼瘟疫和19世纪的中国大规模鼠疫。 马克斯-普朗克人类历史科学研究所的古病理学专家Kirsten Bos表示,这些结果表明“具有传播潜力的瘟疫存在的时间比我们想象得更久。”Bos是这篇论文的通讯作者之一。【Abstract】The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000–3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day.We thank Cosimo Posth, Marcel Keller, Michal Feldman and Wolfgang Haak for useful insights to the manuscript, as well as Alexander Immel and Stephen Clayton for computational support. In addition, we are thankful to Guido Brandt, Antje Wissgott and Cäcilia Freund for laboratory support. M.A.S., A.H., K.I.B. and J.K. were supported by the ERC starting grant APGREID, and by the Max Planck Society. C.C.W. was supported by the Max Planck Society and the Nanqiang Outstanding Young Talents Program of Xiamen University. D.K. was supported by a Marie Heim-Vögtlin grant from the Swiss National Science Foundation

    The genetic prehistory of the Baltic Sea region

    Get PDF
    Correction: Nature communications 9 (2018), art. no. 1494 doi:10.1038/s41467-018-03872-yWhile the series of events that shaped the transition between foraging societies and food producers are well described for Central and Southern Europe, genetic evidence from Northern Europe surrounding the Baltic Sea is still sparse. Here, we report genome-wide DNA data from 38 ancient North Europeans ranging from similar to 9500 to 2200 years before present. Our analysis provides genetic evidence that hunter-gatherers settled Scandinavia via two routes. We reveal that the first Scandinavian farmers derive their ancestry from Anatolia 1000 years earlier than previously demonstrated. The range of Mesolithic Western hunter-gatherers extended to the east of the Baltic Sea, where these populations persisted without gene-flow from Central European farmers during the Early and Middle Neolithic. The arrival of steppe pastoralists in the Late Neolithic introduced a major shift in economy and mediated the spread of a new ancestry associated with the Corded Ware Complex in Northern Europe.Peer reviewe

    Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir

    Get PDF
    Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual taxa and communities of both microbes and eukaryotes. AncientMetagenomeDir (archived at https://doi.org/10.5281/zenodo.3980833) is a collection of annotated metagenomic sample lists derived from published studies that provide basic, standardised metadata and accession numbers to allow rapid data retrieval from online repositories. These tables are community-curated and span multiple sub-disciplines to ensure adequate breadth and consensus in metadata definitions, as well as longevity of the database. Internal guidelines and automated checks facilitate compatibility with established sequence-read archives and term-ontologies, and ensure consistency and interoperability for future meta-analyses. This collection will also assist in standardising metadata reporting for future ancient metagenomic studies

    Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes

    Get PDF
    The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541–750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events

    Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague

    Get PDF
    [Significance] The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry.The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.This study was funded by the Max Planck Society, Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean and the European Research Council under the European Union’s Horizon 2020 research and innovation program under Grant Agreement 771234 – PALEoRIDER (to W.H.), 856453 – HistoGenes (to J.K.), and 834616 – ARCHCAUCASUS (to S.H.). The Heidelberg Academy of Science financed the genetic and archeological research on human individuals from the Augsburg region within the project WIN Kolleg: “Times of Upheaval: Changes of Society and Landscape at the Beginning of the Bronze Age. M.E. was supported by the award “Praemium Academiae” of the Czech Academy of Sciences. M.D. was supported by the project RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences, Prague. I.O. was supported by the Ramón y Cajal grant from Ministerio de Ciencia e Innovación, Spanish Government (RYC2019-027909-I). A. H€ubner was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2051 – Project-ID 390713860). J.F.-E. and J.A.M.-A. were supported by the Diputación Foral de Alava, IT 1223-19, Gobierno Vasco. A. Buzhilova was supported by the Center of Information Technologies and Systems (CITIS), Moscow, Russia 121041500329-0. L. M., L.B.D., and E. Khussainova were supported by the Grant AP08856654, Ministry of Education and Science of the Republic of Kazakhstan. A. Beisenov was supported by the Grant AP08857177, Ministry of Education and Science of the Republic of Kazakhstan.Peer reviewe

    Beyond phylogenies: advancing analytical approaches for the field of ancient pathogenomics

    Get PDF
    Ancient pathogenomics is the field that studies past pathogens by recovering ancient DNA from archaeological remains. This discipline has been highly reliant on phylogenetic analyses, which provide information on: how past strains are related to their modern relatives; past diversity of the pathogen in question; and their geographical dispersal during past epidemics. However, in order to understand what genomic changes contributed to the dispersal, adaptation, and virulence evolution of pathogens, as well as to understand their past ecology, one needs to employ other analytical tools. In this thesis, I have employed and adapted the concepts of gene content, de novo assembly, and pangenomics to study the differences in virulence and functional potential of ancient bacterial strains. I have applied these approaches to Yersinia pestis, the bacterium responsible for plague, with a focus on its early genomic evolution in Eurasia between 5,000 to 3,000 years ago. I also demonstrate these concepts by applying these workflows to the first recovered ancient Streptococcus mutans genome from South Africa. This pathobiont is strongly associated with caries formation, one of the top ten health burdens affecting present day human populations. Overall, this thesis showcases the importance of expanding the ancient pathogenomics toolkit to include functional analytical approaches to study past pathogen genomes. Only in the light of archaeological contexts, will we gain insight into the emergence, ecology and long-term evolution of ancient pathogens

    Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager

    Get PDF
    The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological questions is resulting in a rising diversity in the size of laboratories and scale of analyses being performed. In the context of this heterogeneous landscape, we present an advanced, and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient genomic data. This Nextflow pipeline aims to address three main themes: accessibility and adaptability to different computing configurations, reproducibility to ensure robust analytical standards, and updating the pipeline to the latest routine ancient genomic practices. The new version of EAGER has been developed within the nf-core initiative to ensure high-quality software development and maintenance support; contributing to a long-term life-cycle for the pipeline. nf-core/eager will assist in ensuring that a wider range of ancient DNA analyses can be applied by a diverse range of research groups and fields
    corecore