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Abstract

The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological
questions is resulting in a rising diversity in the size of laboratories and scale of analyses being
performed. In the context of this heterogeneous landscape, we present nf-core/eager, an advanced
and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient
genomic data. This Next�ow pipeline aims to address three main themes: accessibility and
adaptability to di�erent computing con�gurations, reproducibility to ensure robust analytical
standards, and updating the pipeline to the latest routine ancient genomic practises. This new version
of EAGER has been developed within the nf-core initiative to ensure high-quality software
development and maintenance support; contributing to a long-term lifecycle for the pipeline. nf-
core/eager will assist in ensuring that ancient DNA sequencing data can be used by a diverse range of
research groups and �elds.

Introduction

Ancient DNA (aDNA) has become a widely accepted source of biological data, helping to provide new
perspectives for a range of �elds including archaeology, cultural heritage, evolutionary biology,
ecology, and palaeontology. The utilisation of short-read high-throughput sequencing has allowed the
recovery of whole genomes and genome-wide data from a wide variety of sources, including (but not
limited to), the skeletal remains of animals [1,2,3,4], modern and archaic humans [5,6,7,8], bacteria
[9,10,11], viruses [12,13], plants [14,15], palaeofaeces [16,17], dental calculus [18,19], sediments
[20,21], medical slides [22], parchment [23], and recently, ancient ‘chewing gum’ [24,25].
Improvement in laboratory protocols to increase yields of otherwise trace amounts of DNA has at the
same time led to studies that can total hundreds of ancient individuals [26,27], spanning single [28]
to thousands of organisms [18]. These di�erences of disciplines have led to a heterogeneous
landscape in terms of the types of analyses undertaken, and their computational resource
requirements [29,30]. Taking into consideration the unequal distribution of resources (and
infrastructure such as internet connection), easy-to-deploy, streamlined and e�cient pipelines can
help increase accessibility to high-quality analyses.

The degraded nature of aDNA poses an extra layer of complexity to standard modern genomic
analysis. Through a variety of processes [31] DNA molecules fragment over time, resulting in ultra-
short molecules [32]. These sequences have low nucleotide complexity making it di�cult to identify
with precision which part of the genome a read (a sequenced DNA molecule) is derived from.
Fragmentation without a ‘clean break’ leads to uneven ends, consisting of single-stranded ‘overhangs’
at end of molecules, which are susceptible to chemical processes such as deamination of nucleotides.
These damaged nucleotides then lead to misincorporation of complementary bases during library
construction for high-throughput DNA sequencing [33]. On top of this, taphonomic processes such as
heat, moisture, and microbial- and burial-environment processes lead to varying rates of degradation
[34,35]. The original DNA content of a sample is therefore increasingly lost over time and supplanted
by younger ‘environmental’ DNA. Later handling by archaeologists, museum curators, and other
researchers can also contribute ‘modern’ contamination. While these characteristics can help provide
evidence towards the ‘authenticity’ of true aDNA sequences (e.g. the aDNA cytosine to thymine or C to
T ‘damage’ deamination pro�les [36]), they also pose speci�c challenges for genome reconstruction,
such as unspeci�c DNA alignment and/or low coverage and miscoding lesions that can result in low-
con�dence genotyping. These factors often lead to prohibitive sequencing costs when retrieving
enough data for modern high-throughput short-read sequencing data pipelines (such as more than 1
billion reads for a 1X depth coverage Yersinia pestis genome [37]), and thus aDNA-tailored methods
and techniques are required to overcome these challenges.
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Two previously published and commonly used pipelines in the �eld are PALEOMIX [38] and EAGER
[39]. These two pipelines take a similar approach to link together standard tools used for Illumina
high-throughput short-read data processing (sequencing quality control, sequencing adapter
removal/and or paired-end read merging, mapping of reads to a reference genome, genotyping, etc.).
However, they have a speci�c focus on tools that are designed for, or well-suited for aDNA (such as
the bwa aln algorithm for ultra-short molecules [40] and mapDamage [41] for evaluation of aDNA
characteristics). Yet, neither of these genome reconstruction pipelines have had major updates to
bring them in-line with current routine aDNA analyses. Metagenomic screening of o�-target genomic
reads for pathogens or microbiomes [18,19] has become particularly common in palaeo- and
archaeogenetics, given its role in revealing widespread infectious disease and possible epidemics that
have sometimes been previously undetected in the archaeological record [12,13,37,42]. Without easy
access to the latest �eld-established analytical routines, ancient genomic studies risk being published
without the necessary quality control checks that ensure aDNA authenticity, as well as limiting the full
range of possibilities from their data. Given that material from samples is limited, there are both
ethical as well as economical interests to maximise analytical yield [43].

To address these shortcomings, we have completely re-implemented the latest version of the EAGER
pipeline in Next�ow [44] (a domain-speci�c-language or ‘DSL’, speci�cally designed for the
construction of omics analysis pipelines), introduced new features, and more �exible pipeline
con�guration. In addition, the renamed pipeline - nf-core/eager - has been developed in the context of
the nf-core community framework [45], which enforces strict guidelines for best-practices in software
development.

Results and Discussion
Scalability, Portability, and E�ciency

The re-implementation of EAGER into Next�ow o�ers a range of bene�ts over the original custom
pipeline framework.

Firstly, the new framework provides immediate integration of nf-core/eager into various job
schedulers in POSIX High-Performance-Cluster (HPC) environments, cloud computing resources, as
well as local workstations. This portability allows users to set up nf-core/eager regardless of the type
of computing infrastructure or cluster size (if applicable), with minimal e�ort or con�guration. This
facilitates reproducibility and therefore maintenance of standards within the �eld. Portability is
further assisted by the in-built compatibility with software environments and containers such as
Conda [46], Docker [47] and Singularity [48]. These are isolated software ‘sandbox’ environments that
include all software (with exact versions) required by the pipeline, in a form that is installable and
runnable by users regardless of the set up of their local software environment. Another major change
with nf-core/eager is that the primary user interaction mode of a pipeline run set up is now with a
command-line interface (CLI), replacing the graphical-user-interface (GUI) of the original EAGER
pipeline. This is more portable and compatible with most HPCs (that may not o�er display of a
window system), and is in line with the vast majority of bioinformatics tools. We therefore believe this
will not be a hindrance to new researchers from outside computational biology. However, a GUI-
based pipeline set up is still avaliable via the nf-core website’s Launch page [49], which provides a
common GUI format across multiple pipelines, as well as additional robustness checks of input
parameters for those less familiar with CLIs. Typically the output of the launch functionality is a JSON
�le that can be used with a nf-core/tools launch command as a single parameter (similar to the
original EAGER), however integration with Next�ow’s companion monitoring tool tower.nf [50] also
allows direct submission of pipelines without any command line usage.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.06.11.145615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145615
http://creativecommons.org/licenses/by/4.0/


Secondly, reproducibility is made easier through the use of ‘pro�les’ that can de�ne con�guration
parameters. These pro�les can be managed at di�erent hierarchical levels. HPC-level pro�les can
specify parameters for the computing environment (job schedulers, cache locations for containers,
maximum memory and CPU resources etc.), which can be centrally managed to ensure all users of a
group use the same settings. Pipeline-level pro�les, specifying parameters for nf-core/eager itself,
allow fast access to routinely-run pipeline parameters via a single �ag in the nf-core/eager run
command, without having to con�gure each new run from scratch. Compared to the original EAGER,
which utilised per-FASTQ XML �les with hardcoded �lepaths for a speci�c user’s server, nf-core/eager
allows researchers to publish the speci�c pro�le used in their runs alongside their publications, that
can also be used by other groups to generate the same results. Usage of pro�les can also reduce
mistakes caused by insu�cient ‘prose’ based reporting of program settings that can be regularly
found in the literature. The default nf-core/eager pro�le uses parameters evaluated in di�erent aDNA-
speci�c contexts (e.g. in [51]), and will be updated in each new release as new studies are published.

Finally, nf-core/eager provides improved e�ciency over the original EAGER pipeline by replacing
sample-by-sample sequential processing with Next�ow’s asynchronous job parallelisation, whereby
multiple pipeline steps and samples are run in parallel (in addition to natively parallelised pipeline
steps). This is similar to the approach taken by PALEOMIX, however nf-core/eager expands this by
utilising Next�ow’s ability to customise the resource parameters for every job in the pipeline; reducing
unnecessary resource allocation that can occur with unfamiliar users to each step of a high-
throughput short-read data processing pipeline. This is particularly pertinent given the increasing use
of centralised HPCs or cloud computing that often use per-hour cost calculations.

Updated Work�ow

nf-core/eager follows a similar structural foundation to the original version of EAGER and partially to
PALEOMIX. Given Illumina short-read FASTQ and/or BAM �les and a reference FASTA �le, the core
functionality of nf-core/eager can be split in �ve main stages:

1. Pre-processing
Sequencing quality control: FastQC [52]
Sequencing artefact clean-up (merging, adapter clipping): AdapterRemoval2 [53], fastp [54]
Pre-processing statistics generation: FastQC

2. Mapping and post-processing
Alignment against reference genome: BWA aln and mem [40,55], CircularMapper [39], Bowtie2
[57]
Mapping quality �ltering: SAMtools [58]
PCR duplicate removal: DeDup [39], Picard MarkDuplicates [59]
Mapping statistics generation: SAMTools, PreSeq [60], Qualimap2 [61], bedtools [62],
Sex.DetERRmine [63]

3. aDNA evaluation and modi�cation
Damage pro�ling: DamagePro�ler [64]
aDNA reads selection: PMDtools [65]
Damage removal/Base trimming: Bamutils [66]
Human nuclear contamination estimation: ANGSD [67]

4. Variant calling and consensus sequence generation: GATK Uni�edGenotyper and HaploTypeCaller
[59], ANGSD [67], sequenceTools pileupCaller [68], VCF2Genome [39], MultiVCFAnalyzer [9]

5. Report generation: MultiQC [69]

In nf-core/eager, all tools originally used in EAGER have been updated to their latest versions, as
available on Bioconda [70] and Conda-forge [71], to ensure widespread accessibility and stability of
utilised tools. The mapDamage2 (for damage pro�le generation) [36] and Schmutzi (for mitochondrial
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contamination estimation) [72] methods have not been carried over to nf-core/eager, the �rst
because a more performant successor method is now available (DamagePro�ler), and the latter
because a stable release of the method could not be migrated to Bioconda. We anticipate that there
will be an updated version of Schmutzi in the near future that will allow us to integrate the method
again into nf-core/eager. As an alternative, estimation of human nuclear contamination is now o�ered
through ANGSD [67]. Support for the Bowtie2 aligner [57] has been updated to have default settings
optimised for aDNA [73].

New tools to the basic work�ow include fastp [54] for the removal of ‘poly-G’ sequencing artefacts
that are common in 2-colour Illumina sequencing machines (such as the increasingly popular NextSeq
and NovaSeq platforms [74]). For variant calling, we have now included FreeBayes [75] as an
alternative to the human-focused GATK tools, and have also added pileupCaller [68] for generation of
genotyping formats commonly utilised in ancient human population analysis. We have also
maintained the possibility of using the now unsupported GATK Uni�edGenotyper, as the supported
replacement, GATK HaplotypeCaller, performs de novo assembly around possible variants; something
that may not be suitable for low-coverage aDNA data.

Figure 1:  Simpli�ed schematic of the nf-core/eager work�ow pipeline. Green �lled bubbles indicate new functionality
added over the original EAGER pipeline.

Additional functionality tailored for ancient bacterial genomics includes integration of a SNP
alignment generation tool, MultiVCFAnalyzer [9], which includes the ability to make an assessment of
levels of cross-mapping from di�erent related taxa to a reference genome - a common challenge in
ancient bacterial genome reconstruction [35]. The output SNP consensus alignment FASTA �le can
then be used for downstream analyses such as phylogenetic tree construction. Simple coverage
statistics of particular annotations (e.g. genes) of an input reference is o�ered by bedtools [62], which
can be used in cases such as for providing initial indications of functional di�erences between ancient
bacterial strains (as in [42]). When using a human reference genome, nf-core/eager can also give
estimates of the relative coverage on the X and Y chromosomes with Sex.DetERRmine that can be
used to infer the biological sex of a given human individual [63]. A dedicated ‘endogenous DNA’
calculator (endorS.py) is also included, to provide a percentage estimate of the sequenced reads
matching the reference (‘on-target’) from the total number of reads sequenced per library.

Given the large amount of sequencing often required to yield su�cient genome coverage from aDNA
data, palaeogeneticists tend to use multiple (di�erently treated) libraries, and/or merge data from
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multiple sequencing runs of each library or even samples. The original EAGER pipeline could only run
a single library at a time, and in these contexts required signi�cant manual user input in merging
di�erent FASTQ or BAM �les of related libraries. A major upgrade in nf-core/eager is that the new
pipeline supports automated processing of complex sequencing strategies for many samples, similar
to PALEOMIX. This is facilitated by the optional use of a simple table (in TSV format, a format more
commonly used in wet-lab stages of data generation, compared to PALEOMIX’s YAML format) that
includes �le paths and additional metadata such as sample name, library name, sequencing lane,
colour chemistry, and UDG treatment. This allows automated and simultaneous processing and
appropriate merging and treatment of heterogeneous data from multiple sequencing runs and/or
library types.

The original EAGER and PALEOMIX pipelines required users to look through many independent output
directories and �les to make full assessment of their sequencing data. This has now been replaced in
nf-core/eager with a much more extensive MultiQC report [69]. This tool aggregates the log �les of
every supported tool into a single interactive report, and assists users in making a fuller assessment
of their sequencing and analysis runs. We have developed a corresponding MultiQC module for every
tool used by nf-core/eager, where possible, to enable comprehensive evaluation of all stages of the
pipeline.

We have further extended the functionality of the original EAGER pipeline by adding ancient
metagenomic analysis; allowing reconstruction of the wider taxonomic content of a sample. We have
added the possibility to screen all o�-target reads (not mapped to the reference genome) with two
metagenomic pro�lers: MALT [76,77] and Kraken2 [78], in parallel to the mapping to a given
reference genome (typically of the host individual, assuming the sample is a host organism).
Characterisation of properties of authentic aDNA from metagenomic MALT alignments is carried out
with MaltExtract of the HOPS pipeline [79]. This functionality can be used either for microbiome
screening or putative pathogen detection. Ancient metagenomic studies sometimes include
comparative samples from living individuals [80]. To support open data, whilst respecting personal
data privacy, nf-core/eager includes a ‘FASTQ host removal’ script that creates raw FASTQ �les, but
with all reads successfully mapped to the reference genome removed. This allows for safe upload of
metagenomic non-host sequencing data to public repositories after removal of identi�able (human)
data, for example for microbiome studies.

An overview of the entire pipeline is shown in Figure 1, and a tabular comparison of functionality
between EAGER, PALEOMIX and nf-core/eager is in Table 1.

To demonstrate the simultaneous genomic analysis of human DNA and metagenomic screening for
putative pathogens, as well as improved results reporting, we re-analysed data from Barquera et
al. 2020 [81], who performed a multi-discipline study of three 16th century individuals excavated from
a mass burial site in Mexico City. The authors reported genetic results showing su�cient on-target
human DNA (>1%) with typical aDNA damage (>20% C to T reference mismatches in the �rst base of
the 5’ ends of reads) for downstream population-genetic analysis and Y-chromosome coverage
indicative that the three individuals were genetically male. In addition, one individual (Lab ID: SJN003)
contained DNA suggesting a possible infection by Treponema pallidum, a species with a variety of
strains that can cause diseases such as syphilis, bejel and yaws, and a second individual (Lab ID:
SJN001) displayed reads similar to the Hepatitis B virus. Both results were con�rmed by the authors
via in-solution enrichment approaches.

We were able to successfully replicate the human and pathogen screening results in a single run of nf-
core/eager. Mapping to the human reference genome (hs37d5) with BWA aln and binning of o�-target
reads with MALT to the NCBI Nucleotide database (2017-10-26), yielded the same results of all
individuals having a biological sex of male, as well as the same frequency of C to T miscoding lesions
and short fragment lengths (both characteristic of true aDNA). Metagenomic hits to both pathogens
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from the corresponding individuals that also yielded complete genomes in the original publication
were also detected. Both results and other processing statistics were identi�ed via a single interactive
MultiQC report, excerpts of which can be seen in Figure 2. The full interactive report can be seen in
the supplementary information.

Figure 2:  Sections of a MultiQC report (v1.10dev) with the outcome of simultaneous human DNA and microbial
pathogen screening with nf-core/eager, including A Sex.DetERRmine output of biological sex assignment with coverages
on X and Y being half of that of autosomes, indicative of male individuals, and B HOPS output with positive detection of
both Treponema pallidum and Hepatitis B virus reads - indicated with blue boxes. Other taxa in HOPS output represent
typical environmental contamination and oral commensal microbiota found in archaeological teeth. Data was Illumina
shotgun sequencing data from Barquera et al. 2020 [81], and replicated results here were originally veri�ed in the
publication via enrichment methods. The full interactive reports for both MultiQC v1.9 and v1.10 (see methods) can be
seen in the supplementary information.

Accessibility

Alongside the interactive MultiQC report, we have written extensive documentation on all parts of
running and interpreting the output of the pipeline. Given that a large fraction of aDNA researchers
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come from �elds outside computational biology, and thus may have limited computational training,
we have written documentation and tutorials [82] that also gives guidance on how to run the pipeline
and interpret each section of the report in the context of high-throughput sequencing data, but with
with a special focus on aDNA. This includes best practice or expected output schematic images that
are published under CC-BY licenses to allow for use in other training material (an example can be
seen in Figure 3). We hope this open-access resource will make the study of aDNA more accessible to
researchers new to the �eld, by providing practical guidelines on how to evaluate characteristics and
e�ects of aDNA on downstream analyses.

Figure 3:  Example schematic images of pipeline output documentation that can assist new users in the interpretation
of high-throughput sequencing aDNA processing.

The development of nf-core/eager in Next�ow and the nf-core initiative will also improve open-source
development, while ensuring the high quality of community contributions to the pipeline. While
Next�ow is written primarily in Groovy, the Next�ow DSL simpli�es a number of concepts to an
intermediate level that bioinformaticians without Java/Groovy experience can easily access (regardless
of own programming language experience). Furthermore, Next�ow places ubiquitous and more
widely known command-line interfaces, such as bash, in a prominent position within the code, rather
than custom Java code and classes (as in EAGER). We hope this will motivate further bug �xes and
feature contributions from the community, to keep the pipeline state-of-the-art and ensure a longer
life-cycle. This will also be supported by the open and active nf-core community who provide general
guidance and advice on developing Next�ow and nf-core pipelines.

Comparisons with other pipelines

The scope of nf-core/eager is as a generic, initial data processing and screening tool, and not to act as
a tool for performing more experimental analyses that requires extensive parameter testing such as
modelling. As such, while similar pipelines designed for aDNA have also been released, for example
ATLAS [83], these generally have been designed with speci�c contexts in mind (e.g. human population
genetics). We therefore have opted to not include common downstream analysis such as Principal
Component Analysis for population genetics, or phylogenetic analysis for microbial genomics, but
rather focus on ensuring nf-core/eager produces useful �les that can be easily used as input for
common but more experimental and specialised downstream analysis.

Therefore, we compared pipeline run-times of two functionally equivalent and previously published
pipelines to show that the new implementation of nf-core/eager is equivalent or more e�cient than
EAGER or PALEOMIX.

Table 1:  Comparison of pipeline functionality of common ancient DNA processing pipelines. Tick represents full
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functionality, tilde represents partial functionality, and cross represents not implemented.

Category Functionality EAGER PALEOMIX nf-core/eager

Infrastructure Reproducible software environments o�ered ✓ ✗ ✓

HPC scheduler integration ✗ ✗ ✓

Cloud computing integration ✗ ✗ ✓

Per-process resource optimisation ✗ ~ ✓

Pipeline-step parallelisation ✗ ✓ ✓

Command line set up ✗ ✓ ✓

GUI set up ✓ ✗ ✓

Preprocessing Sequencing lane merging ✓ ✓ ✓

Sequencing quality control ✓ ✗ ✓

Sequencing artefact removal ✗ ✗ ✓

Adapter clipping/read merging ✓ ✓ ✓

Post-processing sequencing QC ✗ ✗ ✓

Alignment Reference mapping ✓ ✓ ✓

Reference mapping statistics ✓ ✓ ✓

Multi-reference mapping ✗ ✓ ✗

Postprocessing Mapped reads �ltering ✓ ✓ ✓

O�-target metagenomic pro�ling ✗ ✗ ✓

O�-target metagenomic authentication ✗ ✗ ✓

Library complexity estimation ✓ ✗ ✓

Duplicate removal ✓ ✗ ✓

BAM merging ✗ ✓ ✓

Authentication Damage read �ltering ✓ ✗ ✓

Contamination estimation (Human) ✓ ✗ ✓

Biological sex determination (Human) ✗ ✗ ✓

Genome coverage estimation ✓ ✓ ✓

Damage calculation ✓ ✓ ✓

Damage rescaling ✗ ✓ ~

Downstream SNP Calling/Genotyping ✓ ~ ✓

Consensus sequence generation ✓ ~ ✓

Regions of interest statistics ~ ✓ ✓

We ran each pipeline on a subset of Viking-age genomic data of cod (Gadus morhua) from Star et
al. 2017 [4]. This data was originally run using PALEOMIX, and was re-run here as described, but with
the latest version of PALEOMIX (v1.2.14), and with equivalent settings for the other two pipelines as
close as possible to the original paper (EAGER with v1.92.33, and nf-core/EAGER with v2.2.0dev,
commit 830c22d). The respective benchmarking environment and exact pipeline run settings can be
seen in the Methods and Supplementary Information. Two samples each with three Illumina paired-
end sequencing runs were analysed, with adapter clipping and merging (AdapterRemoval), mapping
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(BWA aln), duplicate removal (Picard’s MarkDuplicates) and damage pro�ling (PALEOMIX:
mapDamage2, EAGER and nf-core/EAGER: DamagePro�ler) steps being performed. We ran the
commands for each tool sequentially, but repeated these batches of commands 10 times - to account
for variability in the cloud service’s IO connection. Run times were measured using the GNU time tool
(v1.7).

Table 2:  Comparison of run times in minutes between three ancient DNA pipelines. PALEOMIX and nf-core/eager have
additional runs with ‘optimised’ parameters with fairer computational resources matching modern multi-threading
strategies. Values represent mean and standard deviation of run times in minutes, calculated from the output of the
GNU time tool. Real: real time, System: cumulative CPU system-task times, User: cumulative CPU time of all tasks.

Pipeline Version Environment real sys user

nf-core-eager (optimised) 2.2.0dev singularity 105.6 ± 4.6 13.6 ± 0.7 1593 ± 79.7

PALEOMIX (optimised) 1.2.14 conda 130.6 ± 8.7 12 ± 0.7 1820.2 ± 36.9

nf-core-eager 2.2.0dev singularity 209.2 ± 4.4 11 ± 0.9 1407.7 ± 30.2

EAGER 1.92.37 singularity 224.2 ± 4.9 22.9 ± 0.3 1736.3 ± 70.2

PALEOMIX 1.2.14 conda 314.6 ± 2.9 10.7 ± 1 1506.7 ± 14

A summary of runtimes of the benchmarking tests can be seen in Table 2. nf-core/eager showed
fastest runtimes across all three time metrics when running on default parameters. This highlights the
improved e�ciency of nf-core/eager’s asynchronous processing system and per-process resource
customisation (here represented by nf-core/eager defaults designed for typical HPC set ups).

As a more realistic demonstration of modern computing multi-threading set ups, we also re-ran
PALEOMIX with the �ag –max-bwa-threads set to 4 (listed in Table 2 as ‘optimised’), which is
equivalent to a single BWA aln process of nf-core/eager. This resulted in a much faster run-time than
that of default nf-core/eager, due to the approach of PALEOMIX of mapping each lane of a library
separately, whereas nf-core/eager will map all lanes of a single library merged together. Therefore,
given that each library was split across three lanes, increasing the threads of BWA aln to 4 resulted in
12 per library, whereas nf-core/eager only gave 4 (by default) for a single BWA aln process of one
library. While the PALEOMIX approach is valid, we opted to retain the per-library mapping as it is often
the longest running step of high-throughput sequencing genome-mapping pipelines, and it prevents
�ooding of HPC scheduling systems with many long-running jobs. Secondly, if users regularly use
multi-lane data, due to nf-core/eager’s �ne-granularity control, they can simply modify nf-core/eager’s
BWA aln process resources via con�g �les to account for this. When we optimised parameters that
were used for BWA aln’s multi-threading, and the number of multiple lanes to the same number of
BWA aln threads as the optimised PALEOMIX run, nf-core/eager again displayed faster runtimes. All
metrics including mapped reads, percentage on-target, mean depth coverage and mean read lengths
across all pipelines were extremely similar across all pipelines and replicates (see methods and Table
3).

Conclusion

nf-core/eager is an e�cient, portable, and accessible pipeline for processing and screening ancient
(meta)genomic data. This re-implementation of EAGER into Next�ow and nf-core will improve
reproducibility and scalability of rapidly increasing aDNA datasets, for both large and small
laboratories. Extensive documentation also enables newcomers to the �eld to get a practical
understanding on how to interpret aDNA in the context of NGS data processing. Ultimately, nf-
core/eager provides easier access to the latest tools and routine screening analyses commonly used
in the �eld, and sets up the pipeline for remaining at the forefront of palaeogenetic analysis.
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Methods

Installation

nf-core/eager requires only three dependencies: Java (version >= 8), Next�ow, and either a functional
Conda installation or Docker/Singularity engine installation. A quick installation guide to follow to get
started can be found in the Quick start section of the nf-core/eager repository [84].

Running

After installation, users can run the pipeline using standard test data by utilising some of the test
pro�les we provide (e.g. using Docker):

This will download test data automatically (as recorded in the test_tsv pro�le), run the pipeline locally
with all software tools containerised in a Docker image. The pipeline will store the output of that run
in the default ‘./results’ folder of the current directory.

The default pipeline settings assumes paired-end FASTQ data, and will run:

FastQC
AdapterRemoval2 (merging and adapter clipping)
post-clipping FastQC (for AdapterRemoval2 performance evaluation)
BWA mapping (with the ‘aln’ algorithm)
samtools �agstat (for mapping statistics)
endorS.py (for endogenous DNA calculation)
Picard MarkDuplicates (for PCR amplicon deduplication)
PreSeq (for library complexity evaluation)
DamagePro�ler and Qualimap2 (for genome coverage statistics)
MultiQC pipeline run report

If no additional FASTA indices are given, these will also be generated.

The pipeline is highly con�gurable and most modules can be turned on-and-o� using di�erent �ags at
the request of the user, to allow a high level of customisation to each user’s needs. For example, to
include metagenomic screening of o�-target reads, and sex determination based on on-target
mappings of pre-clipped single-end data:

nextflow run nf-core/eager -r 2.2.0 -profile test_tsv,docker

nextflow run nf-core/eager -r 2.2.0 \  
-profile conda \ 
--input '/<path>/<to>/*/*R1*.fastq.gz' --single_end \  
--fasta '/<path>/<to>/<reference>.fasta.gz' \  
--skip_fastqc --skip_adapterremoval \ 
--run_bam_filtering --bam_discard_unmapped --bam_unmapped_type 'fastq' \ 
--run_metagenomic_screening \  
--metagenomic_tool 'malt' --database '/<path>/<to>/<malt_database>' \ 
--run_sexdeterrmine
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Pro�les

In addition to private locally de�ned pro�les, we utilise a central con�guration repository to enable
users from various institutions to use pipelines on their particular infrastructure more easily [85].
There are multiple resources listed in this repository with information on how to add a user’s own
institutional con�guration pro�le with help from the nf-core community. These pro�les can be both
generic for all nf-core pipelines, but also customised for speci�c pipelines.

Users can customise this infrastructure pro�le by themselves, with the nf-core community, or with
their local system administrator to make sure that the pipeline runs successfully, and can then rely on
the Next�ow and nf-core framework to ensure compatibility upon further infrastructure changes. For
example, in order to run the nf-core/eager pipeline at the Max Planck Institute for the Science of
Human History (MPI-SHH), users only have to run:

This runs the testing pro�le of the nf-core/eager pipeline with parameters speci�cally adapted to a
speci�c HPC system at the MPI-SHH. In some cases, similar institutional con�gs for other institutions
may already exist (originally utilised for di�erent nf-core pipelines), so users need not necessarily
write their own.

Inputs

The pipeline can be started using (raw) FASTQ �les from sequencing or pre-mapped BAM �les.
Additionally, the pipeline requires a FASTA reference genome. If BAM input is provided, an optional
conversion to FASTQ is o�ered, otherwise BAM �les processing will start from the post-mapping
stage.

If users have complex set-ups, e.g. multiple sequencing lanes that require merging of �les, the
pipeline can be supplied with a tab separated value (TSV) �le to enable such complex data handling.
Both FASTQs and BAMs can be provided in this set up. FASTQs with the same library name and
sequencing chemistry but sequenced across multiple lanes will be concatenated after adapter
removal and prior mapping. Libraries with di�erent sequencing chemistry kits (paired- vs. single-end)
will be merged after mapping. Libraries with the same sample name and with the same UDG
treatment, will be merged after deduplication. If libraries with the sample name have di�erent UDG
treatment, these will be merged after the aDNA modi�cation stage (i.e. BAM trimming or PMDtools, if
turned on), prior to genotyping, as shown in Figure 4.

Figure 4:  Schematic of di�erent processing and merging points based on the nature of di�erent libraries, as speci�ed
by the metadata of a TSV �le. Dashed boxes represent optional library-speci�c processes. Colours refer to each merge

nextflow run nf-core/eager -r 2.2.0 -profile test_tsv,sdag,shh
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points, which occur at certain points along the pipeline depending on the metadata columns de�ned in the TSV �le.

As Next�ow will automatically download �les from URLs, pro�les and/or TSV �les, users can include
links to publicly available data (e.g. the European Bioinformatics Institutes’s ENA FTP server). This
assists in reproducibility, because if pro�les or TSV �les are uploaded with a publication, a researcher
wishing to re-analyse the data in the same way can use the exact settings and �le merging procedures
in the original publication, without having to reconstruct this from prose.

Monitoring

Users can either monitor their pipeline execution with the messages Next�ow prints to the console
while running, or utilise companion tools such as Next�ow’s Tower [50] to monitor their analysis
pipeline during runtime.

Output

The pipeline produces a multitude of output �les in various �le formats, with a more detailed listing
available in the user documentation. These include metrics, statistical analysis data, and standardised
output �les (BAM, VCF) for close inspection and further downstream analysis, as well as a MultiQC
report. If an emailing daemon is set up on the server, the latter can be emailed to users automatically,
when starting the pipeline with a dedicated option (--email you@yourdomain.org).

Benchmarking

Dual Screening of Human and Microbial Pathogen DNA

Full step-by-step instructions on the set up of the human and pathogen screening demonstration
(including input TSV �le) can be seen in the supplementary information. To demonstrate the e�ciency
and conciseness of nf-core/eager pipeline in it’s dual role for both human and microbial screening of
ancient material, we replicated the results of Barquera et al. 2020 [81] using v2.2.0 (commit: e7471a7
and Next�ow version: 20.04.1).

The following command was used to run the pipeline on the in-house servers at the MPI-SHH,
including a 2 TB memory node for running MALT against the NCBI Nt (Nucleotide) database, and
therefore the centralised custom pro�le for this cluster was used.
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nextflow run nf-core/eager -r 2.2.0 \  
-profile microbiome_screening,sdag,shh \ 
-with-tower \  
--input 'barquera2020_pathogenscreening.tsv' \  
--fasta 'ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_referenc
\

 
--bwaalnn 0.01 \ 
--bwaalnl 32 \  
--run_bam_filtering \  
--bam_discard_unmapped \  
--bam_unmapped_type fastq \ 
--dedupper 'markduplicates' \ 
--run_mtnucratio \  
--run_nuclear_contamination \  
--run_sexdeterrmine \  
--sexdeterrmine_bedfile 'https://github.com/nf-core/test-

datasets/raw/eager/reference/Human/1240K.pos.list_hs37d5.0based.bed.gz
\

 
--run_metagenomic_screening \  
--metagenomic_tool malt \ 
--run_maltextract \  
--percent_identity 90 \  
--malt_top_percent 1 \  
--malt_min_support_mode 'reads' \ 
--metagenomic_min_support_reads 1 \  
--malt_max_queries 100 \  
--malt_memory_mode load \ 
--maltextract_taxon_list 

'https://raw.githubusercontent.com/rhuebler/HOPS/external/Resources/de
\

 
--maltextract_filter def_anc \ 
--maltextract_toppercent 0.01 \ 
--maltextract_destackingoff \  
--maltextract_downsamplingoff \  
--maltextract_duplicateremovaloff \  
--maltextract_matches \  
--maltextract_megansummary \  
--maltextract_percentidentity 90.0 \ 
--maltextract_topalignment \  
--database 'malt/databases/indexed/index040/full-nt_2017-10/' \ 
--maltextract_ncbifiles 'resources/'
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To include the HOPS results from metagenomic screening in the report, we also re-ran MultiQC with
the upcoming version v1.10 (to be integrated into nf-core/eager on release). After then installing the
development version of MultiQC (commit: 7584e64), as described in the MultiQC documentation [86],
we ran the following command in the results directory of the nf-core/eager run, using the same
con�guration �le.

Until MultiQC v1.10 is released, the HOPS heatmap is exported by nf-core/eager in the corresponding
MaltExtract results directory. Reports from both versions (and the standalone HOPS PDF) can be seen
in the supplementary information.

Pipeline Comparison

Full step-by-step instructions on the set up of the pipeline run-time benchmarking, including
environment and tool versions, can be seen in the supplementary information. EAGER (v1.92.37) and
nf-core/eager (v2.2.0, commit: 830c22d; Next�ow v20.04.1) used the provided pre-built singularity
containers for software environments, whereas for PALEOMIX (v1.2.14) we generated a custom conda
environment (see supplementary information for the environmental.yaml  �le). Run time
comparisons were performed on a 32 CPU (AMD Opteron 23xx) and 256 GB memory Red Hat QEMU
Virtual Machine running the Ubuntu 18.04 operating system (Linux Kernel 4.15.0-112). Resource
parameters of each tool were only modi�ed to specify the maximum available on the server and
otherwise left as default.

The following commands were used for each pipeline, with the commands run 10 times, each after
cleaning up reference and results directories using a for loop. Run times of the run commands
themselves were measured using GNU Time.

multiqc . -c multiqc_config.yaml -n multiqc1_10.html -o multiqc1_10
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## EAGER - description of XML files can be seen in supplementary information 
singularity exec \ 
-B ~/benchmarks/output/EAGER:/data ~/.singularity/cache/EAGER-cache/EAGER-

GUI_latest.sif \  
eagercli \  
/data  

 
## PALEOMIX - description of input YAML files can be seen in supplementary 
## information  
paleomix bam_pipeline run 

~/benchmarks/output/paleomix/makefile_paleomix.yaml  
 

## paleomix optimised - description of input YAML files can be seen in 
## supplementary information 
paleomix bam_pipeline \  
run ~/benchmarks/output/paleomix_optimised/makefile_paleomix.yaml \  
--bwa-max-threads 4 

 
## nf-core/eager - description of resources configuration file (-c) can be 

seen  
## in supplementary information 
nextflow run nf-core/eager -r 2.2.0 \  
--input ~/benchmarks/output/nfcore-eager-optimised/nfcore-eager_tsv.tsv \ 
-c ~/.nextflow/pub_eager_vikingfish.conf \  
-profile pub_eager_vikingfish_optimised,pub_eager_vikingfish,singularity \ 
--fasta ~/benchmarks/reference/GCF_902167405.1_gadMor3.0_genomic.fasta \ 
--outdir ~/benchmarks/output/nfcore-eager-optimised/results/ \ 
-w ~/benchmarks/output/nfcore-eager-optimised/work/ \ 
--skip_fastqc \  
--skip_preseq \  
--run_bam_filtering \  
--bam_mapping_quality_threshold 25 \  
--bam_discard_unmapped \  
--bam_unmapped_type 'discard' \ 
--dedupper 'markduplicates' 

 
##nf-core/eager optimised - description of resources profile(s) with 

optimised  
## bwa threads setting can be seen in supplementary information 
nextflow run nf-core/eager -r 2.2.0 \  
--input ~/benchmarks/output/nfcore-eager-optimised/nfcore-eager_tsv.tsv \ 
-c ~/.nextflow/pub_eager_vikingfish.conf \  
-profile pub_eager_vikingfish_optimised,pub_eager_vikingfish,singularity \ 
--fasta ~/benchmarks/reference/GCF_902167405.1_gadMor3.0_genomic.fasta \ 
--outdir ~/benchmarks/output/nfcore-eager-optimised/results/ \ 
-w ~/benchmarks/output/nfcore-eager-optimised/work/ \ 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.06.11.145615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145615
http://creativecommons.org/licenses/by/4.0/


Mapping results across all pipelines showed very similar values, with low variation across replicates as
can be seen in Table 3.

Table 3:  Comparison of common results values of key high-throughput short-read data processing and mapping steps
across the three pipelines. ‘qf’ stands for mapping-quality �ltered reads. All values represent mean and standard
deviation across 10 replicates of each pipeline, calculated from the output of the GNU time tool.

sample_nam
e category EAGER nf-core/eager PALEOMIX

COD076 processed_reads 71388991 ± 0 71388991 ± 0 72100142 ± 0

COD092 processed_reads 69615709 ± 0 69615709 ± 0 70249181 ± 0

COD076 mapped_qf_reads 16786467.7 ± 106.5 16786491.1 ± 89.9 16686607.2 ± 91.3

COD092 mapped_qf_reads 16283216.3 ± 71.3 16283194.7 ± 37.4 16207986.2 ± 44.4

COD076 ontarget_qf 23.5 ± 0 23.5 ± 0 23.1 ± 0

COD092 ontarget_qf 23.4 ± 0 23.4 ± 0 23.1 ± 0

COD076 dedupped_mapped_reads 12107264.4 ± 87.8 12107293.7 ± 69.7 12193415.8 ± 86.7

COD092 dedupped_mapped_reads 13669323.7 ± 87.6 13669328 ± 32.4 13795703.3 ± 47.9

COD076 mean_depth_coverage 0.9 ± 0 0.9 ± 0 0.9 ± 0

COD092 mean_depth_coverage 1 ± 0 1 ± 0 1 ± 0

COD076 mean_read_length 49.4 ± 0 49.4 ± 0 49.4 ± 0

COD092 mean_read_length 48.8 ± 0 48.8 ± 0 48.7 ± 0

Data and software availability

All pipeline code is available on GitHub at https://github.com/nf-core/eager and archived with Zenodo
under the DOI 10.5281/zenodo.1465061. The version of nf-core/eager that this manuscript is based
on was the ‘dev’ branch of the GitHub repository (2.2.0dev), and was released as v2.2.0.
Demonstration data for dual ancient human and pathogen screening from Barquera et al. [81] is
publicly available on the European Nucleotide Archive (ENA) under project accession PRJEB37490. The
human reference genome (hs37d5) and screening database (Nucleotide or ‘nt’, October 2017) was
downloaded from National Center for Biotechnology Information FTP server. Ancient Cod genomic
data from Star et al. [4] used for benchmarking is publicly available on the ENA under project
accession PRJEB20524. The Gadus morhua reference genome NCBI accession ID is: GCF_902167405.1.

This paper was collaboratively written with Manubot [87], and supplementary information including
demonstration and benchmarking environments descriptions and walk-through can be seen on
GitHub at https://github.com/apeltzer/eager2-paper/ and the supplement/  directory.

--skip_fastqc \  
--skip_preseq \  
--run_bam_filtering \  
--bam_mapping_quality_threshold 25 \  
--bam_discard_unmapped \  
--bam_unmapped_type 'discard' \ 
--dedupper 'markduplicates'
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