727 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Explainable AI for ML jet taggers using expert variables and layerwise relevance propagation

    Full text link
    A framework is presented to extract and understand decision-making information from a deep neural network (DNN) classifier of jet substructure tagging techniques. The general method studied is to provide expert variables that augment inputs ("eXpert AUGmented" variables, or XAUG variables), then apply layerwise relevance propagation (LRP) to networks both with and without XAUG variables. The XAUG variables are concatenated with the intermediate layers after network-specific operations (such as convolution or recurrence), and used in the final layers of the network. The results of comparing networks with and without the addition of XAUG variables show that XAUG variables can be used to interpret classifier behavior, increase discrimination ability when combined with low-level features, and in some cases capture the behavior of the classifier completely. The LRP technique can be used to find relevant information the network is using, and when combined with the XAUG variables, can be used to rank features, allowing one to find a reduced set of features that capture part of the network performance. In the studies presented, adding XAUG variables to low-level DNNs increased the efficiency of classifiers by as much as 30-40\%. In addition to performance improvements, an approach to quantify numerical uncertainties in the training of these DNNs is presented.Comment: 38 pages, 30 figure

    4W1H in IoT semantics

    Get PDF
    International audienceIoT systems are now being deployed worldwide to sense phenomena of interest. The existing IoT systems are often independent which limits the use of sensor data to only one application. Semantic solutions have been proposed to support reuse of sensor data across IoT systems and applications. This allows integration of IoT systems for increased productivity by solving challenges associated with their interoperability and heterogeneity. Several ontologies have been proposed to handle different aspects of sensor data collection in IoT systems, ranging from sensor discovery to applying reasoning on collected sensor data for drawing inferences. In this paper, we study and categorise the existing ontologies based on the fundamental ontological concepts (e.g., sensors, context, location, and more) required for annotating different aspects of data collection and data access in an IoT application. We identify these fundamental concepts by answering the 4Ws (What, When, Who, Where) and 1H (How) identified using the 4W1H methodology

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets

    Get PDF
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe

    Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV

    Get PDF
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe

    Measurement of the Jet Mass Distribution and Top Quark Mass in Hadronic Decays of Boosted Top Quarks in pp Collisions at root s=13 TeV

    Get PDF
    A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at root s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lepton + jets channel of t (t) over bar events, where the lepton is an electron or muon. The products of the hadronic top quark decay t -> bW -> bq (q) over bar' are reconstructed as a single jet with transverse momentum larger than 400 GeV. The t (t) over bar cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 +/- 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.Peer reviewe
    • 

    corecore