257 research outputs found

    A historical Southern Ocean climate dataset from whaling ships’ logbooks

    Get PDF
    Historical ship logbooks provide vital historic meteorological observations in the Southern Ocean, one of the largest climate-data deficient regions on the Earth. Christian Salvesen Whaling Company logbooks from whaling ships operating in the Southern Ocean, starting from the 1930s through the 1950s, are examined. Meteorological information contained in these logbooks has been extracted to produce a historical climate dataset. We discuss various instructions recommended by the British Admiralty to observe and record weather conditions on board whaling ships. Statistical tests were used to flag erroneous values and corrections were made using neighbouring values. Meteorological parameters such as air pressure, air and sea temperature and wind force on the Beaufort scale were standardised, converting imperial to metric units. The data were structured according to the internationally accepted International Maritime Meteorological Archive (IMMA) format, which includes the most commonly reported meteorological variables, including the time, location, and ship-related meta-data. Hence, a readily accessible, error-corrected and standardised historical climate dataset of the Weddell Sea sector of the Southern Ocean is presented

    On sediment dispersal in the Whitsand Bay Marine Conservation Zone

    Get PDF
    Some ‘thought experiment’ modelling results and interpretations of data and theory are presented to investigate the possibility that Whitsand Bay, and its recently (2013) designated Marine Conservation Zone (MCZ), might have been affected in the past both by intrusion of dredge-spoil sediments from the now-closed disposal site located close to the seaward boundary of the MCZ and by suspended sediment and low salinity waters from the adjacent Tamar Estuary and Plymouth Sound. The schematic modelling work (2D and 3D) is considered to provide approximate indications rather than precise predictions. The component of Tamar waters present within the MCZ is computed to be small (<10%). The location of the dredge-spoil (model tracer/particle-release) source point is crucially important to the intrusion of tracer within the MCZ. Modelled bedload sediment transport from the disposal site toward or away from the MCZ occurs with high waves and is dependent on near-bed tidal, wave and wind-driven currents

    The available power from placing tidal stream turbines in the Pentland Firth

    Get PDF
    This paper assesses an upper bound for the tidal stream power resource of the Pentland Firth. A depthaveraged numerical model of the tidal dynamics in the region is set-up and validated against field measurements. Actuator disc theory is used to model the effect of turbines on the flow, and to estimate the power available for generation after accounting for losses owing to mixing downstream of the turbines. It is found that three rows of turbines extending across the entire width of the Pentland Firth and blocking a large fraction of the channel can theoretically generate 1.9GW, averaged over the spring-neap cycle. However, generation of significantlymore power than this is unlikely to be feasible as the available power per additional swept area of turbine is too small to be viable. Our results differ from those obtained using simplified tidal channelmodels of the type used commonly in the literature.We also use our numerical model to investigate the available power from rows of turbines placed across various subchannels within the Pentland Firth, together with practical considerations such as the variation in power over the spring-neap tidal cycle and the changes to natural tidal flows which result from power extraction. © 2013 The Author(s) Published by the Royal Society. All rights reserved

    Pollutant advective spreading in beach sand exposed to high-energy tides

    Get PDF
    yesThis paper presents field measurements in which dye solute was injected into coastal sand to investigate contaminant advection in intertidal beach sand. The measurements show the pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A prescribed amount of dye tracer solution was directly injected through the topsoil, with average porosity 0.3521±0.01, at predetermined locations of the River Mersey’s outer estuarial beach during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and water-table depth were sampled in-situ, close to the injection point (differing from previous contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact which is different from contaminant transport in aquifers. The experimental results show that plumes have significantly large spatial variability, diverging upwards and converging downwards, with a conical geometric shape which is different from the usual spherical/elliptical shape reported in literature. The mean vertical motion of the plume reaches three times the top-width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The observed transport features of the plume within the beach sand have significant relevance to saltwater intrusion, surface water and groundwater quality. The field observations are unique and can serve as a valuable benchmark database for relevant numerical studies.China Ministry of Science and Technology 973 program (2014CB745001), Special Program of future development in Shenzhen (201411201645511650) and Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment(ZDSY20130402163735964)

    Pollutant advective spreading in beach sand exposed to high-energy tides

    Get PDF
    yesThis paper presents field measurements in which dye solute was injected into coastal sand to investigate contaminant advection in intertidal beach sand. The measurements show the pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A prescribed amount of dye tracer solution was directly injected through the topsoil, with average porosity 0.3521±0.01, at predetermined locations of the River Mersey’s outer estuarial beach during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and water-table depth were sampled in-situ, close to the injection point (differing from previous contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact which is different from contaminant transport in aquifers. The experimental results show that plumes have significantly large spatial variability, diverging upwards and converging downwards, with a conical geometric shape which is different from the usual spherical/elliptical shape reported in literature. The mean vertical motion of the plume reaches three times the top-width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The observed transport features of the plume within the beach sand have significant relevance to saltwater intrusion, surface water and groundwater quality. The field observations are unique and can serve as a valuable benchmark database for relevant numerical studies.China Ministry of Science and Technology 973 program (2014CB745001), Special Program of future development in Shenzhen (201411201645511650) and Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment(ZDSY20130402163735964)

    The 1928 eruption of Mount Etna (Italy): Reconstructing lava flow evolution and the destruction and recovery of the town of Mascali

    Get PDF
    Abstract Mount Etna in Sicily (Italy) shows more than 2,500 years of interactions between volcanic eruptions and human activity, and these are well documented in historical sources. During the last 400 years, flank eruptions have had major impacts on the urban fabric of the Etna region, especially in 1651, 1669, 1923 and 1928, and it is the last of these which is the focus of this paper. In this paper a detailed field and historical reconstruction of the 1928 eruption is presented which allows three themes to be discussed: the evolution of the flow field, lava volume and average magma discharge rate trend; the eruption's human impact, particularly the destruction of the town of Mascali; and the recovery of the region with re-construction of Mascali in a new location. Detailed mapping of lava flows allowed the following dimensions to be calculated: total area, 4.38 x 106 m2; maximum length, 9.4 km; volume, 52.91 ± 5.21 × 106m3 and an average effusion rate of 38.5 m3 s-1. Time-averaged discharged rates are calculated allowing the reconstruction of their temporal variations during the course of the eruption evidencing a high maximum effusion rate of 374 m3 s-1. These trends, in particular with regard to the Lower Fissure main phase of the eruption, are in accordance with the ‘idealized discharge model’ of Wadge (1981), proposed for basaltic eruptions driven by de-pressurization of magma sources, mainly through reservoir relaxation (i.e. elastic contraction of a magma body). The eruption took place when Italy was governed by Mussolini and the fascist party. The State response both, during and in the immediate aftermath of the eruption and in the years that followed during which Mascali was reconstructed, was impressive. This masked a less benign legacy, however, that can be traced for several subsequent decades of using responses to natural catastrophes to manufacture State prestige by reacting to, rather than planning for, disasters
    • …
    corecore