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ABSTRACT 3 

This paper presents field measurements in which dye solute was injected into coastal sand to 4 

investigate contaminant advection in intertidal beach sand. The measurements show the 5 

pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A 6 

prescribed amount of dye tracer solution was directly injected through the topsoil, with average 7 

porosity 0.3521±0.01, at predetermined locations of the River Mersey’s outer estuarial beach 8 

during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal 9 

cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and 10 

water-table depth were sampled in-situ, close to the injection point (differing from previous 11 

contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact 12 

which is different from contaminant transport in aquifers. The experimental results show that 13 

plumes have significantly large spatial variability, diverging upwards and converging 14 

downwards, with a conical geometric shape which is different from the usual spherical/elliptical 15 

shape reported in literature. The mean vertical motion of the plume reaches three times the top-16 

width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The 17 

observed transport features of the plume within the beach sand have significant relevance to 18 

saltwater intrusion, surface water and groundwater quality. The field observations are unique and 19 

can serve as a valuable benchmark database for relevant numerical studies. 20 

Keywords: Coastal foreshore, dye migration, River Mersey Estuary (RME), interstitial 21 

hydraulics, groundwater table. 22 
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1 INTRODUCTION 23 

Most contaminated beach sediments near industrial cities in Europe show relatively high 24 

concentrations of heavy metals and persistent organic pollutants (POPs) even though many 25 

years have passed since they were firstly polluted. This seems to be the case with estuaries 26 

whose watercourses pass through urban and highly industrialised areas, even after the surface 27 

water has been treated. This poses threats to the ecosystem and biodiversity due to releases 28 

associated to toxic sewage, and to remediation efforts often neglecting the river bed.  29 

In the United Kingdom a number of estuaries, such as the Thames, the Mersey, and the Humber, 30 

have had well documented accumulation of untreated domestic and industrial sewage. One 31 

special case is the River Mersey Estuary (RME, in north-west England), which is connected to 32 

Liverpool Bay at the Outer Estuary (see Fig 1). It directly exchanges tidal input and output with 33 

the Irish Sea through Liverpool Bay, where the sands vary from medium to fine. The catchment 34 

area of the RME is densely populated and highly industrialized, and the RME is described as 35 

one of the most polluted water ways in Europe with flow rates promoting high turbidities 36 

(Turner et al, 2002; King et al, 2004; Jones, 2006). It has been reported that a large 37 

concentration of contaminants still persists in extensive RME and Liverpool Bay intertidal 38 

beach sediments. For example, concentrations of Mercury (Hg), caused by use of Castner-39 

Kellner processes, remain as high as 2 mg/kg at discharge outlets linked to chemical plants in 40 

the Widnes–Runcorn areas of RME (Fox et al, 1999; Vane et al, 2007). [Mercury is associated 41 

with organic matter and is toxic to marine invertebrates with potential effects on humans 42 

through ingestion of fish and shellfish].  However, the toxicity levels in the sediments tend to 43 

decrease in the Liverpool Bay regions away from the discharge outlets (Rogers, 2002). Burt et al 44 

(1992) reported the upper and lowest mean levels of Hg in the sediments as 1.2 and 0.01 mg/kg 45 

(in 40% silt), respectively.  POPs, polyaromatic hydrocarbon (PAHs) and polychlorinated 46 

bipheniles (PCBs), in the sediments of RME, its tributaries and Manchester Ship Canal, may 47 

have originated from oil refineries, sewage, paper and chemical works, dockyards, power 48 

stations and shipping activities (Jones, 2006). King et al (2004) found that PAH levels in the 49 

sediments were much more concentrated at depths of 0.5-0.53m. PCB concentration in the RME 50 

is believed to be higher than that in the Thames and the Humber estuaries. Recent observations 51 

by Vane et al (2007) show no declining trends of PCBs but implied that the Outer Estuary areas 52 

are 30 times less contaminated than the Inner Estuary. To our best knowledge, no clear 53 

relationship between contaminant movement and tidally mediated fluxes in beach sediments has 54 

been reported so far. However, Rogers et al (1992) suggested that the presence of these 55 

substances deep in the RME sediments may have been due to tidally induced diffusive mixing. 56 

http://en.wikipedia.org/wiki/Castner-Kellner_process
http://en.wikipedia.org/wiki/Castner-Kellner_process
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Organic matter content between sandy (low organic content) and marsh sediments can also 57 

strongly affect PAH concentration distribution (King et al, 2004). Huang et al (2003) identified 58 

that hydrophobic organic contaminants (HOCs) can readily mix in benthic organic sediment 59 

(BOS) environments. They identified the importance of understanding and quantifying varied 60 

HOC properties for the prediction of transport and eventual fate in aquatic environments. 61 

The vadose zone (intermediary between seawater and groundwater) of the RME intertidal beach 62 

is affected by very complex hydrological processes from high-energy semidiurnal tides. The 63 

beach water table rises and falls with the sea level. So water-borne sewage or sewage discharged 64 

from urban, coastal recreational and industrial activities can enter and be retained or redistributed 65 

(Diaw et al, 2001). Martino et al (2002) suggested that trace-metals accumulated in beach 66 

sediments could be released by kinetic (advective) re-suspension processes and desorbed to the 67 

overlying watercourse. Accurate field studies/measurements are limited due to the complex 68 

hydrological environment as the parameters controlling convective activity in-situ become more 69 

difficult to quantify (Wexler, 1992; Zhang et al, 2002; Precht and Huettel, 2004). As a result, 70 

there is presently poor understanding of the movement and spreading of anthropogenic 71 

substances (such as land-applied chemicals), spills and leaks that eventually enter beach 72 

sediments and consequently the freshwater domain (Mao et al, 2006). This may partly explain 73 

that considerably more research is conducted on contaminant transport in coastal groundwater 74 

(GW) aquifers than on transport in beach sediments (Lanyon et al, 1982; Diaw et al, 2001; Mao 75 

et al, 2006; Denham and Vangelas, 2008). More studies on groundwater behavior in sandy 76 

beaches, with relationships between tide and water-table, can be found in Baird and Horn 77 

(1996); Turner and Leatherman (1997); Kalbus et al (2006); and Berkowitz et al (2008).  78 

Pressure fluctuations can have a significant impact on interstitial oxygenation processes, thus on 79 

fates of contaminants and in some cases on aquatic life (McLachlan, 1989; Precht and Huettel, 80 

2004). Water movement is routed via complex pores and varies with depth and degree of 81 

compaction. The properties of the sand (porosity , grain size and grading) and the dye (density 82 

ρ, and dynamic viscosity μ) are therefore important to determine the role of hydraulic 83 

conductivity (Fetter 1999). This is because the local unsaturated hydraulic conductivity depends 84 

on the degree of soil - water content and/or pressure head (Mohanty et al. 1994; Gupta et al. 85 

1993). Typical porosity for medium to fine sand ranges from 26% to 53% (Domenico and 86 

Schwartz, 1997). Barnes (1995) estimated the hydraulic conductivity values of sand and sand-87 

gravel mixtures to vary significantly from 0.036m/hr to 36m/hr respectively. Fox et al (1999) 88 

showed that the sediment cores of the RME (e.g., Widnes – Runcorn areas) are made up of 2-5% 89 

sand with size distribution of 63-2000μm, 70-75% silt (2-63μm), and 25-27% clay (<2μm). 90 
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The use of conservative tracers to simulate contaminant movement in the field is a known robust 91 

technique. However, Robbins (1989), Callaghan and Codd (1998) and Precht and Huettel (2004) 92 

have shown that use of tracer monitoring devices in intertidal beach sand may not provide 93 

reliable qualitative and quantitative concentration data. This is because the intrusive techniques, 94 

such as probes and positron emission tomography, can affect the natural flow regime in the 95 

subsurface environment. 96 

This study was motivated to attract attention of remediation efforts to consider flushing of the 97 

river bed sediments and foreshore (water quality management issues), along with treatment of 98 

the surface water in estuarine areas of this nature. It reveals that tides can induce surface water – 99 

vadose zone - groundwater interactive transport. The study was also motivated by the fact that 100 

most methods for monitoring the contaminant in the field involved intrusive techniques, such as 101 

probes and positron emission tomography, which are known to affect the natural flow regime in 102 

the subsurface environment, hence may not present the expected natural phenomenon. Therefore, 103 

there is a need to visualize full shapes of the plume in the field in order to investigate the 104 

contaminant movement in beach.  105 

2 SITE CONDITION AND METHODOLOGY 106 

A non-intrusive method is employed is employed to investigate the contaminant movement in 107 

beach sand subject to large tidal range in this study. A conservative tracer (dye) is injected 108 

0.05m below the unsaturated beach sediment surface. The experiments lasted over one to ten 109 

semidiurnal tidal cycles during the summer months of 2006 and 2007. Sediment characteristics, 110 

water table depth of the intertidal zone and the spatial variability of fully extracted plumes were 111 

sampled, processed and analyzed.  112 

2.1  Study area 113 

The experiments were carried out in Liverpool Bay (the RME Outer Estuary injection site 114 

(OEIS) and Narrows (Narrows Estuary injection site (NEIS); 53′26″N and 03′02″W) at New 115 

Brighton, England (see Fig 1). The Mersey Estuary of Northwest England has an area of 116 

approximately 5000 km
2
, with a history as one of the most polluted estuaries in Europe (WPRL, 117 

1974; Jones, 2000; Vane et al, 2007). Its catchment has a high density of population up to 5 118 

million, including the major municipalities of Liverpool and Manchester, and was heavily 119 

industrialized.  RME consists of four divisions, namely the Upper, the Inner, the Narrows and 120 

the Outer Estuary. 121 
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The Outer Estuary includes a large intertidal sand beach, with a range of facilities at the 122 

sheltered corner of the coast and a marine lake seawards of the shoreline.  The Narrows is an 123 

ostrich-neck-like convergence with breadth measuring 1.0-1.5 km and a maximum depth of 30 124 

m. The broader Inner Estuary is a characteristic mixed estuary with salinity measuring an 125 

equivalent of 4g/l at low tides to 11g/l at high tides. The current passing through the Narrows has 126 

a velocity up to 2m/s at spring tides.  127 

Generally speaking, tides from the Irish Sea directly enter the RME during the flood phase 128 

through Liverpool Bay and discharge to the Irish Sea during the ebb phase. Tidal range is 129 

between 10.7m (maximum springs) and 4.0m (minimum neaps).  The water volume of the RME 130 

varies from 0.7 x 10
7
 m

3
 at low tide to 3.5 x 10

8
 m

3
 at high tide, indicating a significant effect on 131 

the catchment.  The mean sea level (MSL) is about 5.214m above the ordinance datum (AOD) 132 

(Admiralty Tide Tables, 2005).  The strong tidal currents sustain large sandbank build-up in the 133 

estuary.  The sheltered boundary may be affected through groundwater flow from the wave run-134 

up and infiltration at the intertidal reach.  135 

The exposed beach consists of a variation of medium to fine sand and localized mud banks. The 136 

aquifers of sheltered and of intertidal boundaries receive water from the prevailing tidal regime. 137 

There are several borehole wells that litter the sheltered boundary, the closest of which to any of 138 

the injection sites is about 1km. The Marine Lake however is less than 20.0m from OEIS-IZ (A) 139 

and has depth varying from 5.0m at the west end to about 0.5m at the east end. The intertidal 140 

zone of OEIS from the inland beach bank to the shoreline at low ebbs averages between 345m 141 

and 450m. At the NEIS area, the width of the intertidal zone varies from about 45m to 368m. 142 

2.2 Experimental design, material and method 143 

2.2.1 Site preparation, tracer type and dye injection 144 

Tests were carried out at three OEIS injection zones (IZs), namely A, B, and C, and two NEIS 145 

injection zones, namely A and B.  The activities on site included surveillance and delineation of 146 

the site, dye injection, sampling, plume measurement, core sample collection, GPS location and 147 

elevation recording. Each IZ defines multiple sampling points (SPs, see Table 1 which lists the 148 

total injected points and the sampled injected points.) with two rectangular dimensions of 1.5 x 149 

2.5 m
2
 and 2.5 x 2.5 m

2
 on the unsaturated beach surface. Dye injection was not repeated on any 150 

previously used SP to avoid the effect associated with disturbed flow field resulted from 151 

previous injection and sampling activities. The SPs were not equally spaced apart but separated 152 

by a distance of at least 5.0m as measured by a 15.0m fiberglass tape. The rectangular arrays 153 

were divided into 0.5 (length, l) x 0.5 (breadth, b) m
2
 square cells so that each SP consists of 15 154 
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or 25 injection points (IPs) in 3x5 or 5x5 column/row grids (arrays) respectively (see Fig 2 and 155 

Table 1). This means that the injected dye was entrapped within a volume of 0.13125 m
3
 (l=0.5) 156 

x (b=0.5) x (depth h=0.525). The locations of SPs were recorded using a 12-channel Garmin 157 

GPS 76 marine navigator with precision of about ±2m. The inject dye was a red color 810 158 

(E124) conservative agent with 4.3% pure dye content, and density of 0.947g/cm
3
 - 1.022g/cm

3
. 159 

Since the solution is conservative food dye, it is expected that it is not absorbed to the sand 160 

surface. 161 

2.2.2 Tracer solution injection and monitoring 162 

 The dye solution (5.0ml portion) was injected at 0.05m below the beach surface (about 1.55m 163 

below the high tide mark) during low water. The choice of 0.05 m injection depth is considered 164 

to be reasonable since the first 0.05m coastal sand region readily stimulates oxygen injection and 165 

utilization into deeper layers (Rusch et al 2000; Ehrenhauss and Huettel 2004). A 10.0ml 166 

Pressure-Lok precision sampling purge and trap syringe system with appropriately calibrated 167 

hypodermic needles of size 0.028″ x 0.012″ x 2″ was used to inject the dye. Fig 3 demonstrates 168 

that the sampling zone (area) at OEIS-IZ(A & B) generally varies between about 75 to 185m 169 

offshore from the inland beach back barriers. The vertical line of injection (needle-line) is as thin 170 

as the natural soil pores hence assumed non-intrusive. The amount of solution injected and the 171 

depth of injection remained the same in the experiments. Field activities were repeated through 172 

three months during the summer (17/April-17/July 2006; 2007), always at neap tides. Though 173 

winter tests were carried out for three months (22/November 2005-19/January 2006) at OEIS-174 

IZ(A), the success rate was low due to harsh field conditions. The atmospheric environment 175 

during the experiments was not only under sub-zero temperatures but also very windy during 176 

November 2005 to January 2006. As such, it was not convenient (health/safety and clarity-wise) 177 

to conduct sampling/measurement/recording activities in the field, meanwhile to ensure the 178 

measurement accuracy. Therefore, only the summer samples at OEIS-IZ (A and B) are reported 179 

here. The injected sample was monitored through several tidal cycles (1/4, 1, 2, 4, 6, 8, 10, 12, 180 

and 14). The injection always took place at the start of the low tide, therefore, there is no 181 

difference of start state of tide and the state of tide effect on the spread of dye is the same. 182 

2.2.3 Tracer plume sampling, measurement and parameterization 183 

On detecting the contaminated surface area (l x b), each boundary was carefully sectioned using 184 

hand trowels to penetrate the undisturbed plume domain. The volume (l x b x h) of the sand from 185 

the surface was sliced from the edge towards the center of the square (l x b). This was done on 186 

each occasion to maximize recovery and measurement of the full 2D plume shape (see Fig 4 ).  187 
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The geometry of the plume was measured from the photograph taken using a Nikon Coolpix 188 

8800 digital camera of 8.0 effective megapixels. Figures 4a, b and c are the photos taken at 189 

various times indicated in figure caption after injection. It shows the vertical extent of plume, 190 

depth of plume center and the top and bottom widths of plume at various elapse times of 191 

injection. Figure 5 demonstrates and summarizes these parameters. A Cartesian coordinate 192 

system is established using the horizontal line passing the injection point as the x-axis and a 193 

vertical line some distance away from the plume center line as the y-axis. 194 

As the vertical advective spreading is a cone shape, a trapezoidal shape is adopted (see Fig 5) to 195 

evaluate the plume. The top and bottom (front) width of the plume are defined as W1 and W2 196 

respectively. The infiltration depth is the vadose zone with horizontally infinite dimensions. The 197 

depth GI is the depth of injection at I = (0.25,-0.05) while GH represents Y0, the depth of the 198 

center of mass of the cone (Fig 5; Y is the (vertical) depth coordinate).   199 

2.2.4 Depth-to-water and water-table elevation measurement 200 

Water table elevation (WTE) at OEIS-IZ (A and B) and NEIS-IZ (A) was determined by 201 

measuring the depth-to-water table (DTW) and beach surface elevation using a GPSMAP 62S 202 

which has 5ft – 12ft margin of error. DTW was taken as the depth below the beach surface to 203 

the top of the saturated material (subtidal), where the mean pore pressure is atmospheric (zero) 204 

(Nielsen, 1997). The elevation and shape of the water table surface respond to surface water 205 

features resulting from recharge and discharge changes. The DTW measurements averaged to 206 

about 0.525m, which is relevant towards the depth of IP in relation to the high tide mark (HTM, 207 

see Fig 3).  Fig 6 is a typical example showing the variations of the mean elevations of the 208 

beach surface and the depth to water table with beach width. The water-level data were 209 

converted from depth below surface to WTE using the beach surface elevation (BSE) measured 210 

by GPS. In Fig 7, the Kozeny-Carman relation (Klute and Dirksen, 1986) is applied to show the 211 

permeability of core samples taken from injection sites with different grain-sizes. Fig. 8 shows 212 

the influence of tidal variation on the water level of the closest borehole well to the OEIS-IZ and 213 

NEIS-IZ, and marine lake water levels at the sheltered coast. 214 

3 RESULTS AND DISCUSSIONS 215 

3.1 Physical properties of beach sediment 216 

The grain-size distribution of the cores (Samples A-F) showed 96.3 to 100% sand (medium to 217 

fines), 1.3-3.4% silt, 0.1-0.3% clay and 1.4-3.7% mud. The median grain size (d50) is spatially 218 

variable ranging between 0.196m and 0.259m, while the geometric mean of lognormal 219 
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distribution of the diameter varied from 0.176mm to 0.258mm. The effective grain-size (d10) 220 

also varied between 0.121mm and 0.188mm. The ratio of geometric mean grain size to median 221 

grain-size varied from 0.901 to 0.996, with particle standard deviation varying between 1.266 222 

and 1.966. The porosity of the sand determined in the laboratory using the volume of voids to 223 

total volume was 0.352 with confidence level of ±0.01. The coefficient of uniformity Cu was 224 

1.531±0.08 (95% confidence intervals) < 4. The coefficient of curvature Cc, which is dependent 225 

on factors of shape and symmetry, was 0.287±0.01 (95% confidence intervals). Values of Cu 226 

between 1 and 3 normally define well-graded sediment materials. The value of Cu here shows 227 

that size is reasonably regular, hence high porosity and vulnerability.  228 

The optimal moisture content in the capillary fringe above the water table at the maximum 229 

density of 1309.4kg/m
3
 was determined as 20.5% using the first 15cm of unsaturated core 230 

samples from OEIS. The specific yield varied between 0.176±0.004 and 0.214±0.02 using the 231 

untreated core specimens. Averaged permeability K of the sampled sand at OEIS-IZ (A & B) 232 

and NEIS-IZ(A) was determined to be 1.482x10
-5

 m/s using the method of the Falling-head 233 

(Klute and Dirksen, 1986). 234 

Fig 7 is the comparison of permeability of the cores for the sites using the Kozeny-Carman 235 

relation, which is adopted because it incorporates grain-size distribution and shape (Carrier 236 

2003). Fig 7 shows that the permeability of the investigated intertidal sediments decreases with 237 

the increasing of the sand percentage passing the sieve size. Larger difference of the 238 

permeability of sediments at various sites is found for the lower sand percentage passing the 239 

sieve size while this difference decreases for higher sand percentage of passing the sieve size.  240 

More pressure is needed to squeeze the injectate through sediment with low permeability (i.e. 241 

high sand percent passing) than in zones with high permeability (i.e., low sand percent passing). 242 

The grain-size distribution of the cores in this study showing high sand percent passing is mainly 243 

from medium to fine sand. It is also seen that the permeability of the intertidal sediments at the 244 

OEIS-IZ (A) was much higher than that of others at the lower sand percentage passing the sieve 245 

size. However, the permeability of sand at the OEIS-IZ (A) decreases sharply with the increasing 246 

of sand percentage passing the sieve size and is lower than that of sediments taken in other sites. 247 

The results are in good agreement with published data in literature for the same category of 248 

marine sand (Todd, 1980; Mason, 1997; Li et al, 2009). In-situ values of permeability are usually 249 

larger than laboratory estimates as shown in Li et al (2009), so the values of K found in this 250 

study are at the lower end. 251 
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3.2 Influence on local groundwater (GW) table by tidal events 252 

Monthly-averaged Liverpool sea level from the records at the British Oceanographic Data Centre 253 

(BODC) was5.154m in August 1991 and rose to 5.177m in December 2006 while the annual 254 

mean of 1991 was 5.158m and by 2006 it was 5.401m. Woodworth et al (1999) showed in an 255 

earlier study of data covering the period of 1858 to 1998 from all three (3) tidal water stage 256 

markers (Gladstone, Alfred, and Princes Pier) that the mean sea levels had a relative increase of 257 

0.17m. The tides at Liverpool are predominantly semi-diurnal with mean tidal range of 6.7m 258 

(Woodworth, P. L. and Blackman, D. L. (2002)). The maximum high water and the minimum 259 

low water sea levels observed during this period were recorded as 10.821m and -0.181m on 260 

10/02/1997 at 1244hrs and 20/02/1996 at 1915hrs respectively. Fig 8 shows the effect of the 261 

change of water head at the seaward boundary on the coastal barrier aquifers in 2006. The rise 262 

and fall in the data shows that the local groundwater system may be connected or influenced by 263 

tidal events. 264 

The marine lake water levels were averaged between 2006 and 2007 for different (west to east) 265 

locations. The highest water level in the lake was recorded at the western end.  266 

3.3 Depth of advection and spreading scenario of contaminant in beach sand 267 

To investigate the advection and spreading of plumes, dimensions averaged for the sites in Fig 5 268 

will be used to plot the movement of plumes in space with time. 269 

3.3.1 Scenario at OEIS-IZ (A) – summer 270 

A ‘no-flood’ case was initially tested by injecting the conservative dye through the unsaturated 271 

beach surface and waiting for about 5 hours. The well water level variations were taken from a 272 

relatively distant borehole-well (sj39/130). A second test was an extension to one complete tidal 273 

cycle where dye was injected while the beach surface was unsaturated and then waiting through 274 

one full saturation-unsaturation cycle. About 50 samples were collected at different locations and 275 

Fig 4a, b and c shows the comparison of the output from some of the tests. In Fig 4a, the dye was 276 

allowed for up to 5 hours in the sediments with no tidal flooding on the beach. All the plume 277 

pools in this case look identically circular or spherical in shape when sampled. The mean cross-278 

sectional area was within a 95% confidence interval of 3.384x10
-3

±2.6x10
-4

m
2
. This type of 279 

response was attributed to convective flow since there was no visible recharge that initiated the 280 

spread. Again, when the dye was monitored through one complete tidal (saturation-unsaturation) 281 

cycle, the plume pools changed to conical shapes covering an averaged area of about 282 

0.0032±0.001m
2
 within the entrapment volume (l x b x h). A further change evolved in the 283 

conical contour when the monitoring period was increased to two complete tidal cycles (Fig 4c). 284 
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The area of these plumes was a similar order of magnitude as in the one-cycle case. Without 285 

field observations, intuition for plumes in a porous medium would suggest either a spherical or 286 

elliptical shape. Conical shapes of this nature have not been reported in literature, at least not to 287 

the authors’ knowledge. The determination of the magnitude of the plume and shape could help 288 

towards understanding the extent of dye concentration, direction of distribution and eventual fate 289 

in intertidal coastal zones with similar properties. The formation of plumes as shown in Figs 9 290 

(Top and Bottom) demonstrates the effect of pressure variation in the vadose zone. It is seen 291 

from Figs 9 (Top and Bottom) that the inclination of the tidally induced plumes highlights the 292 

processes of horizontal mass transport and pressure gradient variation controlling coastal 293 

groundwater table fluctuation. Fig 9 (Top) shows a collection of samples representing the 294 

general behavior of the injective in OEIS-IZ (A) from day-1 to day-5. It shows the progressive 295 

formation of a plume by advective spreading in space with time. With infiltration, the pressure in 296 

the pore medium decreases as zones of low pressure is created in the area of the IP. The 297 

progression of subsidence affecting the plume in space with time can be observed clearly. The 298 

Hp (height of plume-top below injection-position) varies from 0.09m (about 1.59m below HTM) 299 

on day 1 to 0.19 (about 1.69m below HTM) by day 5. The visual profile shows that the plume 300 

enters the water table by about day 5 in this particular case. This may be caused by the 301 

infiltration from the flood tide which drives the plume down from the initial position (high 302 

conductivity zone) to a low conductivity region. The damping effects on the plume (difference in 303 

the movement of the plume at the high conductivity zone and at the low conductivity zone) at the 304 

top of the sediments would be therefore small in this case compared to greater depths. This 305 

characteristic behavior can be attributed to the mechanism of mass flux in the direction of the 306 

low conductivity region due to the net horizontal tidal flow, which induces level changes in the 307 

water table. As the shoreline moves inland and offshore with tidal level oscillations, the plume 308 

adapts to the pressure alteration above the capillary fringe in the unsaturated flow. Assuming the 309 

pressure at the beach face be constant, the temporal variations of the pressure gradient in the 310 

capillary fringe will mean that the zero-pressure location changes instantaneously. The pressure-311 

gradient-induced water-table fluctuation is therefore responsible for the rate of advective spread 312 

of the injected dye in space. The orderly transformation of the plume describing the direction of 313 

mass transfer can thus be associated to the effect of fluctuations within the capillary zone. At 314 

varying levels of the instantaneous zero-pressure location during recharge, the capillary fringe 315 

approaches uniformity such that the local mass transfer (plume movement) rate is controlled by 316 

the low permeable materials with hardly visible water movement. In this particular scenario, the 317 

effect of the capillary fringe on mass transport may be small at the surficial region of the beach 318 

due to the high permeability. Also, the beach surface may experience low-frequency sea level 319 
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oscillations with a corresponding response from the water table. However at greater depths (from 320 

about 1.5m below HTM), the effects of the capillary fringe become significant with low 321 

permeability as high-frequency sea level oscillations (tides) take over. This makes the plume 322 

front (bottom width) to spread less and become narrower (see Fig 9 (Top)). The effect of a 323 

receding tide on the injectate could be more significant than recharge, due to the slow expulsion 324 

of capillary water. Observations by Boufadel et al (2006) showed that tidal floods pushed the 325 

tracer mass vertically downwards along mean flow gradients while ebb-tides influenced 326 

spreading with the sea level oscillatory motion. The features in the frames (Fig 9 (Top)) 327 

demonstrate subsidence, movement and potential access of the contaminant into groundwater. 328 

3.3.2 Scenario at OEIS-IZ (B) – summer 329 

To give an objective interpretation of the complex scenarios here, the cases OEIS-IZ (B) were 330 

split into OEIS-IZ (B(i)) with subsidence similar to that observed in OEIS-IZ (A) and OEIS-IZ 331 

(B(ii)) lacking much subsidence. However, in OEIS-IZ (B(i)) cases the rate of subsidence and 332 

vertical spreading tends to decrease with depth, limiting the movement of the center of mass. In 333 

the case of OEIS-IZ (B(ii)), the resulting plume simultaneously diverges upwards and converges 334 

downwards. The results are unique and show that the surficial region of the sediments is prone 335 

to rapid rates of matter exchange, readily stimulating oxygen injection and utilization into 336 

deeper layers (Ehrenhauss and Huettel, 2004) as shown in Figs 9 (Top and Bottom). In Fig 9 337 

(Bottom) the Hp relapses to 0.01m (about 1.51m below HTM) or 0.06m below surface after two 338 

complete tidal cycles (day 1). The plume further spreads upward to the surface water-sediment 339 

interface where the pressure is about constant, showing potential loss of contaminant to surface 340 

water from day 2 to day 5. The results show that the water tables at these two locations, namely 341 

OEIS-IZ (B(i)) and OEIS-IZ (B(ii)), are affected by the same tidal conditions but the plumes 342 

respond differently.  Clearly the tidal oscillations and pressure fluctuations on the beach-sand 343 

are not uniform, hence the varying level of plume response. However, the pattern of spread 344 

(conically shaped plume) conforms to the inland-offshore oscillatory direction of net horizontal 345 

water movement. 346 

This means that the effect of tides on the trapped contaminant (injectate) could also depend on 347 

the level and frequency of instantaneous water table fluctuation. The observation of the plume 348 

response in this area shows that the effects of sediment permeability and capillary pressure 349 

change are significant. Therefore, the effect of tidal water-level-induced BWT fluctuations on 350 

the trapped contaminant will depend on the permeability, magnitude and frequency of tidal 351 

oscillation over the beach. Furthermore, in addition to permeability, the topography of the beach 352 
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face could influence the frequency of water table fluctuation in contrast to water movement in 353 

the subsurface. This observed behavior differing between OEIS-IZ (A) and OEIS-IZ (B) can be 354 

ascribed to the gravity development (Beinhorn et al, 2005) since the topography of the foreshore 355 

is not uniform. The plume widths shown in Fig 12 have potential implications for management 356 

decisions with respect to the surface and groundwater quality. 357 

3.4 Analysis of spatial variability of plume  358 

Fig 10 shows the average of plumes from Site-1 and Site-A of OEIS-IZ (A) which effectively 359 

relate to the movement described in Section 3.3. In other words, the response is such that as the 360 

low-frequency tide pushes the shoreline boundary inland, the high-frequency water table 361 

fluctuates. The movement of these two phases should therefore be responsible for the mass 362 

movement and capillary pressure effects (Li et al., 1997). For example, during the formation 363 

process (advective spreading of the plume), by the 2
nd

 complete tidal-cycle the plume moves 364 

such that the center of mass moves down from the injection point (0.25,-0.05) to H (0.25,-0.169). 365 

After the 6
th

 and 10
th

 cycles the center moves further to I (0.25,-0.223) and N (0.25,-0.286) 366 

respectively while maintaining the full 2D-conical profile. This observation is consistent with 367 

Fig 10 where the first two tidal cycles also differ from the 10
th

. The center moves through point I 368 

(0.25,-0.1427) after 4 cycles to D1 (0.25,-0.3375) after 10 cycles (all in meters). The negative 369 

sign indicates that the dye is below the beach sediment surface. The depths are subject to 370 

adjustment with respect to the HTM (about 1.50m above the beach surface at the injection 371 

region). Also from the samples averaged in OEIS-IZ (B), two distinct responses belonging to 372 

sites B(i) and B(ii) are observed. In site B(i), it was found that the full plume subsides (shifted 373 

downwards) like the previous case, but the fall-rate of the center of mass from the IP diminishes 374 

with increasing time . In site B(ii) [Fig 11] however, the plumes advect and spread while 375 

diverging upwards and converging downwards simultaneously. These characteristic observations 376 

could not have been driven by a singular environmental factor but by a combination of processes 377 

(tidal and water table fluctuations inducing pressure gradients on the foreshore, pore-fluid 378 

salinity, sediment properties). The combination here is unique and has not been reported in 379 

literature. For instance, the dye plumes reveal persistent vertical conical gradients, not 380 

spherical/elliptical shapes. It demonstrates unique and different transport of dye plume 381 

(pollutant) in tidal beach from transport in aquifers. The tidal impact on pollutant movement is 382 

different from contaminant transport in aquifers. The effect of each of these processes (tidal and 383 

water table fluctuations, etc. as above) on these observations could be further explored. The 384 

slowing translation of the center of mass in Fig 11 could be attributed to vertical mixing limiting 385 

kinetic energy due to interception from re-suspension flows. Moreover, since the beach acts as a 386 
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filtrate and burial post, early minute deposits could consolidate deeper for new arrivals to 387 

continue the building process, hence, permeability differences could appear at the sample area. 388 

Furthermore, great average vertical cross-section of the plume is found in Fig 11, giving the 389 

impression of increased flow or mixing rates at the sediment grain-water interfaces at sites B. 390 

This could be due to the near-surface position of the center of mass, which is prone to rapid rates 391 

of matter exchange at the interface (Ehrenhauss and Huettel, 2004), since there is less or no 392 

evidence of subsidence at sites B. 393 

The observations from Figs 10 - 11 clearly show that the dye plume varies strongly with time. 394 

The averaged plume patterns shown in Figs 10-11 also vary with location as described in the 395 

qualitative examples (see Fig 9). This implies that the tidal oscillations and pressure fluctuations 396 

on the beach-sand are also not uniform, and cause wider plume variability in space. 397 

3.4.1 Analytic discussion of the advective spreading of plume features 398 

Figs 12-13 demonstrate that the features of the plume vary considerably at each site but with a 399 

general tendency to spread.  Fig 12 shows a description of mean data points of the bottom width 400 

W2 for site 1, site A and site B. On average W2 narrows spatially to between about 0.03 and 401 

0.06m within the duration of the experiments in these beach sediments. The narrowing of W2 is 402 

not sustained in space and time as shown in the distribution of data points. The similar concave 403 

trend in the curves suggests similarity of the beach characteristic properties. As the plume front 404 

penetrates deeper, the trend of spreading becomes highly variable, and dampens between the 405 

third and fourth days as suggested in the upward concave curves. The narrowing implies that 406 

permeability of these beach sediments decreases with depth. Also, in Fig 12, the Top width W1 407 

diverges with mean length varying between 0.06 and 0.11m. The larger values are associated 408 

with greater permeability and near-surface net horizontal water movement. Tidal oscillation 409 

causes the water table elevation to change or fluctuate instantaneously, which tends to enhance 410 

the mixing rates within the top sediment-water interface layer. The damping effect will be 411 

therefore limited by the high permeability of the surficial sediments as the shoreline water 412 

propagates inland or offshore. The contraction in the curves as downward concave in sites B(i) 413 

& B(ii) may not necessarily mean decreasing mixing rates at the near-surface but rather 414 

reduction in opaqueness of the dye due to loss. The observations clearly show higher horizontal 415 

mixing rates at the near-surface than that at greater depths, as shown in Fig 12. Fig 13 (a) shows 416 

the average depth of the top of the plume below the surface of the sediment (about 1.5m below 417 

HTM) at the sites under investigation. It is seen from Fig 13 (a) that the general trend of the 418 

averaged depth-to-surface data is related to a steady subsidence with time. The variations are 419 
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consistent between all the sites with the exception of B(ii) which is associated with the examples 420 

of upward divergence observed in Fig 9. Shum (1995) acknowledged that the net horizontal 421 

wave driven oscillatory water movement induces sufficient fluxes over the ripple sand beach bed 422 

to initiate interfacial hydraulic flow. It can be seen here that at later times the top of the plume 423 

moved towards the near-surface sediment-water interface. This is an example of loss to surface 424 

water from buried point-sources as shown in Fig 9.  The statistical averaged data from the sites 425 

shown in Fig 13(b) reveal that the vertical length of the plume varies between about 0.12 and 426 

0.35m in space with time. The nonlinearity in the curves shows that the spreading slows and is 427 

even reversed at some later times. This is expressed in the downward-concave curves; from 428 

about day 3 or 4 the plumes tend to contract. This is caused by the vertical mixing limiting 429 

kinetic energy due to low permeability at more consolidated depths. However, plumes lengthen 430 

fast at sites B(ii) compared to the rest of sites. This may be due to continual upward and 431 

downward movement in response to the boundary condition changes at the beach face and 432 

sediment-water table interface. It is estimated that the mean depth of this segregated pore region 433 

is about Y = 1.724m below the HTM. Fig 13 (c) shows the averaged location of center of mass 434 

(Y0) for sites 1, A & B. From the averaged analysis in Figs 10-11, Y0 increases from 0.14 to 435 

0.34m (about 1.64 – 1.84m below the HTM) at OEIS-IZ(A), from 0.13 to 0.29m at B(i) and 0.11 436 

to 0.18m at B(ii). These values of Y0 reflect the different patterns of contaminant mass transport 437 

observed at the two sites. This includes the fact that there is relative lack of subsidence in OIES-438 

IZ (B(ii)). The observations are complex but the underlying interpretation may not deviate 439 

extensively from the basic understanding of induced internal waves or pressure variation 440 

generated through the rough permeable subsurface. In Fig 13 (d) the line represents the 441 

coefficient of variation (0.045 m/day) with time of the location of the center of mass Y0 averaged 442 

from all the sites. The coefficient of variation shows that after injection the centre of the plume 443 

moves down from about 0.09m to 0.315m (about 1.6m – 1.82m below the HTM) by the end of 444 

the fifth day. Increased uncertainty in the centre of mass location with time could influence the 445 

quantification of the contaminant distribution. However, the center-line (linear model) is a good 446 

statistical indicator of the outcome. 447 

The observations in this field study mostly agree with the findings from related studies. For 448 

instance, Horn (2002) showed that tidal current modulation and water table pumping were 449 

characteristic factors affecting contaminants in beach sediments exposed to strong tides. While 450 

these factors distribute tidal energy through relatively large space, they are also able to cause the 451 

migration of dye in the beach subsurface. Boufadel et al (2006) observed that flood-tides draw 452 

the tracer mass down vertically along mean flow gradients whereas ebb-tides influence them to 453 
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spread in-tune with the oscillatory motions. The divergence and convergence of W1 and W2 454 

respectively are in agreement with observations in literature. Webster (1992) and Williams et al 455 

(2003) concluded in their observations that advective dispersion may control transport at the 456 

surficial pore regions of sediments while shear dispersion dominates at deeper levels due to 457 

sustained tidal and wave currents. It is expected that more of the dye will be lost to surface 458 

water at OEIS-IZ (B) than at OEIS-IZ (A) where the tracer predominantly moved downwards 459 

and may subsequently enter the groundwater aquifer. Reimers et al (2004) found the mean 460 

downward flow to decrease downwards.  461 

4 UNCERTAINTY CHARACTERISATION  462 

The spatial variability of the dye was monitored over time and sampled to investigate the 463 

transformation at the source. The resulting plume was then manually measured in the field. 464 

Errors in this quantification process could result in uncertainties due to several factors. For 465 

example, it was not possible to visualize and measure instantaneously, the variables determining 466 

the transitional stages and differences in the behaviour of the dye at the OEIS-IZ (A) and OEIS-467 

IZ (B). The potential sources of uncertainty in this case therefore may be greater than in surface-468 

water transport experiments. However, our method enables direct visualization of the 469 

advectively-spreading plume associated with the movement of the dye in the subsurface. Three 470 

sources of uncertainty that could be associated with the data quantification process therefore 471 

could be: (1) uncertainty in data collection due to measurement error and bias; (2) variability of 472 

measured parameters, arising from the investigators’ view and method of assessment of 473 

‘opaqueness’ of the spread plume; and (3) measurement errors leading to uncertainty of 474 

parameter estimation, such as incomplete sampling (e.g., limited knowledge of the beach sand 475 

properties) and uncertain boundary conditions. 476 

The aforementioned uncertainty sources in this study therefore could be attributed to high 477 

variability of soil compaction and pore-size distribution. Additionally, the events monitored 478 

occurred under periodic interchanges between saturated and unsaturated beach material 479 

(intertidal). This implies that the hydraulic conductivity will also vary with position within the 480 

subsurface granular regions. Soil-water tension or moisture content when unsaturated is 481 

important information for uncertainty reduction in dye displacement. The measurement of the 482 

travel path described in our conical plume formation therefore is informative and an important 483 

factor towards reducing uncertainty of displacement rates in coastal subsurface materials.   484 

5 SUMMARY AND CONCLUSION  485 

We investigate the spatial variability of contaminants in a coastal intertidal sand beach using 486 
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results from field experiments. The experiments involve injection of tracer dye into the top soil 487 

at five different sites, and geotechnical study. After the completion of each session of injection, 488 

the spatial variability of the evolving plume in the field is monitored over time, sampled at the 489 

source and manually measured. The process is repeated up to seven consecutive days over a 490 

period of four summer months in two years and the transport of the tracer plume analyzed to 491 

quantify the injectate advective distribution. The procedure centres on the beach-sand vadose 492 

zone of the coastal foreshore in contrast to contaminant transport in groundwater aquifer studies. 493 

In addition, the method differs from previous studies where the injection position of the dye 494 

(source point) was different from the monitoring point. 495 

The evolved range of dye plumes found here has not been reported in literature. Based on the 496 

features analyzed, the plumes show persistent vertical conical gradients instead of the widely 497 

known spherical/elliptical shapes. The features analyzed can be utilized to evaluate flow rates 498 

(pore velocity), dispersion, and concentration data with a view to determine groundwater flow 499 

paths and contaminants’ fates in intertidal coastal beach sediments. The visual accounts of the 500 

temporal and spatial variations of the plume are presented with satisfactory evidence of the 501 

response mechanism in the subsurface. The vertical profiles of plume cross-section can be 502 

related to local influence of flow ponding and low hydraulic conductivity zones with localized 503 

and dense accumulation stages. The sampled temporal and spatial plume data are insightful, and 504 

can inform relevant future numerical studies and practice-based research. 505 

Results from this field study at the RME suggest that dye discharges into watercourses can 506 

actually enter coastal beach sediments through diffusive fluxes due to tides. The fluxes 507 

according to the study can also drive beach-sediment-applied-dye to resurface in seawater 508 

courses and also enter groundwater courses. A recent example is the 2010 widely publicized 509 

Gulf of Mexico oil accident where crude oil was found deep in beach sediment. Similar 510 

scenarios have also been reported in the crude-oil-rich Niger Delta regions of Nigeria where oil 511 

leaks due to rupture from submerged pipelines enter surface and groundwater courses, causing 512 

serious catchment concerns. This is also in agreement with findings by Boudreau et al (2001) 513 

and Boufadel et al (2006) that the surficial inland - offshore tides can induce large fluxes 514 

exceeding interstitial diffusive flux in the beach vadose zone. The ability therefore to visualize 515 

naturally induced advective transport of contaminant dye at the sediment-water interface can be 516 

a robust means of assessing fate through groundwater tracing techniques. 517 

It is expected that this study will provide the unique benchmark dataset for numerical modelers 518 

to validate their models, which in turn could be used to extend the current field study in terms of 519 

including broad ranges of key parameters. 520 
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 675 

 676 

 677 
Fig 1: Area map with markers showing the injection zones and Marine Lake at the sheltered 678 
boundary of the outer RME with overview map (at the right shows the RME).  679 

 680 
Fig 2: Arrangement of rectangular cross-section of IPs in a typical field site with column/row 681 
divisions (columns are represented by a, b, c, …, and rows by 1, 2 & 3 such that a1, a2,…represent IPs in the 1st 682 
column, etc.; rs = radial distance at a point from an IP; r0 = radius of influence, a function of the shoreline distance 683 
and permeability.) 684 
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  685 
Fig 3: Sketch illustrating the intertidal (shoreline - inland bank) divisions with water table elevation 686 

(WTE), injection area and tidal water marks at the RME [high tide mark (HTM))] 687 

Table 1: Summary of field experiment during the summer (April-July 2006; 2007) 688 

Experimental 

Area 

Injection 

Zone 

Number of IP 

locations @ 
Total IPs @ 

Total IPs 

mined @ 

3*5 

array 

5*5 

array 

3*5 

array 

5*5 

array 

3*5 

array 

5*5 

array 

N56 26 W03 02 OEIS-IZ (A) 57 4 855 100 513 65 

N56 26 W03 03 
OEIS-IZ (B) 32 2 480 50 264 30 

OEIS-IZ (C) 7 1 105 25 63 10 

 
N56 26 W03 02 

NEIS-IZ (A) 16 2 240 50 99 35 

NEIS-IZ (B) 6 1 90 25 27 10 

Total 1770 250 966 150 

 689 
 690 
 691 
 692 
 693 
 694 
 695 
 696 
 697 
 698 
 699 
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 700 

 701 
Fig 4: (a) about 4-5 hours after injection (no flood case), (b) after one complete tidal  702 
cycle and (c) two complete tidal cycles. 703 

 704 



25 
 

 705 

Fig 5: The upper part illustrates the parameter of the plume and direction of movement in space 706 
and the lower graph shows analysis of the plume with coordinates using a trapezoidal identity. 707 
[BA = W1, CD = W2, EF = 0.5m length of square cell, GI = depth to surface, GH = location of centre of mass] 708 
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 709 

Fig 6: Water table elevation relative to the beach surface elevation at the OEIS-IZ (A) 710 

 711 
Fig 7: Permeability of core samples taken from injection sites showing grain-size differences using the 712 

Kozeny-Carman relation. 713 
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 714 
Fig 8: Correlation of SWL and groundwater level changes at the sheltered coast 715 

 716 

Fig 9: Plume subsidence from high conductivity (permeability) into low conductivity depth as 717 
observed in-situ at OEIS-IZ(A) – Top; Plume spread in low & high conductivity zones as observed 718 

in-situ at OEIS-IZ (B) – Bottom. [site (S), Regn (region), IP (injection point), 5ml/5cm (solute 719 
amount injected is 5ml and injection depth is 5cm), Hp (height of plume-top below injection-depth)] 720 
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 722 

Fig 10: Averaged features of conical plume at Site-A [OEIS-IZ (A)] for day 1; day 2; day 3; day 723 

4; day 5 724 

 725 

Fig 11: Averaged features of conical plume yield with depth in Sites B(ii) [OEIS-IZ (B)] for day 726 

1; day 2; day 3; day 4; day 5 727 
 728 

 729 
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 730 
Fig 12: Comparisons of the variations of mean top widths and bottom widths of plumes in Sites (1, 731 
A & B) 732 
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 736 
Fig 13: Comparisons in Sites 1, A & B: (a) Mean variation of plumes in space away from the 737 
beach-sand surface with time. (b) Mean vertical length of plumes. (c) Mean depth of plume center 738 
of mass to surface. (d) Linear model with regression line for deepening center of mass. 739 


