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Cognitive Vulnerability to Major Depression:
View from the Intrinsic Network and
Cross-network Interactions

Xiang Wang, MD, PhD, Dost Öngür, MD, PhD, Randy P. Auerbach, PhD, ABPP,
and Shuqiao Yao, MD, PhD

Abstract: Although it is generally accepted that cognitive factors contribute to the pathogenesis of major depressive dis-
order (MDD), there are missing links between behavioral and biological models of depression. Nevertheless, research
employing neuroimaging technologies has elucidated some of the neurobiological mechanisms related to cognitive-
vulnerability factors, especially from a whole-brain, dynamic perspective. In this review, we integrate well-established
cognitive-vulnerability factors for MDD and corresponding neural mechanisms in intrinsic networks using a dual-
process framework. We propose that the dynamic alteration and imbalance among the intrinsic networks, both in the
resting-state and the rest-task transition stages, contribute to the development of cognitive vulnerability and MDD. Spe-
cifically, we propose that abnormally increased resting-state default mode network (DMN) activity and connectivity
(mainly in anterior DMN regions) contribute to the development of cognitive vulnerability. Furthermore, when subjects
confront negative stimuli in the period of rest-to-task transition, the following three kinds of aberrant network interactions
have been identified as facilitators of vulnerability and dysphoric mood, each through a different cognitive mechanism:
DMN dominance over the central executive network (CEN), an impaired salience network–mediated switching between
the DMN and CEN, and ineffective CEN modulation of the DMN. This focus on interrelated networks and brain-activity
changes between rest and task states provides a neural-system perspective for future research on cognitive vulnerability
and resilience, and may potentially guide the development of new intervention strategies for MDD.

Keywords: cognitive vulnerability, cross-network interaction, functional magnetic resonance imaging, intrinsic network,
major depressive disorder

Major depressive disorder (MDD) is a common, re-
current, and severe psychiatric disorder and a lead-
ing source of disease burden,1 with a lifetime

prevalence of 16.2% in adults and a prevalence of 11.7%

among adolescents 13 to 18 years old.2,3 MDD is charac-
terized not only by persistent negative mood and lack of
motivation, but also by maladaptive thinking styles and spe-
cific impairments in integrating information. These cognitive
disturbances present not only in people suffering from depres-
sive disorders but also in people with elevated negative mood.
Over the years, researchers have explored risk factors for, and
potential treatment approaches to, MDD from both biologi-
cal and psychological perspectives.

Cognitive factors, which have been highlighted in all psy-
chological models, suggest that the interaction of stress and
premorbid vulnerabilities contributes to depressive episodes
throughout the life span.4 Recently, researchers suggested that
cognitive vulnerability may represent an endophenotype for
depression.5 Cognitive-vulnerabilitymodels themselves include
a broad array of risk factors, as in Beck’s cognitive model (e.g.,
information-processing biases, negative self-schemas),6 hope-
lessness theory (e.g., depressogenic attribution styles to event
causes, consequences, and the self ),7 and response-styles theory
(e.g., rumination).8 Given this array of vulnerability factors,
researchers have sought to explore a new model that inte-
grates the core factors of prominent theories in order to pro-
vide a more holistic understanding of cognitive vulnerability.

From theMedical Psychological Institute of Second Xiangya Hospital, Central
South University, Changsha, Hunan, People’s Republic of China (Drs. Wang
and Yao); Department of Psychiatry, Harvard Medical School and McLean
Hospital, Belmont, MA (Drs. Öngür and Auerbach).

Supported byChinese Ministry of Education’s Humanities and Social Science
Research Project grant no. 13YJA190015 and Program for New Century Ex-
cellent Talents in University grant no. NCET-12-0557 (Dr. Wang); National In-
stitutes of Health grant nos. R01MH094594 (Dr. Öngür) and K23MH097786
(Dr. Auerbach); Harvard Medical School Kaplen Fellowship on Depression
(Dr. Auerbach); and National Natural Science Foundation of China grant no.
81071104 (Dr. Yao).

Original manuscript received 22 August 2014; revised manuscript received
27 November 2014, accepted for publication 12 January 2015.

Correspondence: Shuqiao Yao, Medical Psychological Institute of Second
Xiangya Hospital, Central South University, 139 Renmin (M) Road, Changsha,
Hunan 410011, People’s Republic of China. Email: Shuqiaoyao@163.com

© 2016 President and Fellows of Harvard College. This is an open-access ar-
ticle distributed under the terms of the Creative Commons Attribution-Non
Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissi-
ble to download and share the work provided it is properly cited. The work
cannot be changed in any way or used commercially.

DOI: 10.1097/HRP.0000000000000081

REVIEW

188 www.harvardreviewofpsychiatry.org Volume 24 • Number 3 • May/June 2016

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


The dual-process theory of cognitive vulnerability, which
has been supported by many behavior experiments,9–12 inte-
grates the main vulnerability factors into one model from an
information-processing perspective.13 According to this model,
two information-processing modes correlate with the cogni-
tive vulnerability to depression: one is called associative/
implicit mode, which is characterized by quick, effortless pro-
cessing based on well-learned associations, and the other is
called reflective/explicit mode, which is characterized by slow,
effortful processing that requires more intention and aware-
ness.9,14 Dual-process theory emphasizes negatively biased,
self-referential, associative processing as the foundation for
cognitive vulnerability, which may be overcome by corrective
reflective processing. Additionally, the theory raises three sce-
narios of interplay between associative and reflective process-
ing that may lead to a downward spiral and then into more
severe forms of dysphoria (see Figure 1). The dual-process
theory thus provides a relatively parsimonious framework of
cognitive vulnerability. It emphasizes the dynamic imbalance
between two cognitive processes in the generation and per-
sistence of negative mood. In addition, the model integrates

the core factors of prominent cognitive-vulnerability theories,
such as the negative information-processing biases and nega-
tive self-schemas of Beck’s cognitive model, the depressogenic
attribution in hopelessness theory, and the rumination in
response-styles theory.14 There remains a gap, however, be-
tween the symptom/behavior level of psychopathological
theory and the associated biological underpinnings of de-
pressive vulnerability.

Advances in brain imaging, especially in the field of intrin-
sic neural network research, may provide a useful tool to
identify the missing neural-behavioral links (see Text Box 1).
Over the past two decades, neuroimaging research using affec-
tive or cognitive tasks to study depressive vulnerability has
shown that altered corticolimbic connectivity contributes to
the generation of excessive and persistent negative affect.15,16

Additionally, given that substantial evidence has demonstrated
the functional importance of spontaneous BOLD activity on
task-related responses and has highlighted its predictive na-
ture for subsequent behavioral and mental states,17–20 resting-
state functional magnetic resonance imaging (fMRI) has been
increasingly utilized to probe cognitive-vulnerability factors

Figure 1. Aberrant intrinsic network interaction model that integrates the dual-process model of cognitive vulnerability, which has been adapted from Beevers
(2005).14 The dual-process model includes two modes of information processing: (1) an associative mode involving quick, effortless processing, and (2) a
reflective mode involving slow, effortful processing. We propose that abnormally increased resting-state DMN activity and connectivity, along with the
corresponding biased associative processing (depressive rumination), contribute to the foundation of cognitive vulnerability. In the period of rest-to-task
transition, aberrant network interactions contribute to three scenarios in which an associative bias cannot be corrected, thus promoting cognitive vulnerability.
These three scenarios are (1) DMN dominance over the CEN (cognitive-resource depletion), (2) abnormal SN switching between the DMN and CEN
(associative bias does not violate internal expectancies and trigger reflective processing), and (3) failure to activate the CEN effectively (reflective processing
being triggered but failing to accurately adjust associative bias). As a result, a feedback loop between negative bias and dysphoria occurs, leading to a
downward spiral. The solid lines in the triple-network model indicate enhanced interactions, while the dotted lines indicate attenuated interactions. CEN,
central executive network; DMN, default mode network; SN, salience network.
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implicated in depression.21 Specifically, aberrant resting-state
activity and functional connectivity in cortical midline struc-
tures have been reliably observed in at-risk,22,23 depressed,24,25

and formerly depressed populations.26,27 Moreover, abnor-
mality in the default-mode network (DMN), a principal in-
trinsic brain network including cortical midline structures,
is increasingly associated with cognitive vulnerability among
at-risk and depressed individuals.28,29 Other large-scale neu-
ral networks, such as the central executive network (CEN)
and salience network (SN), also seem to play a role in biased
attention and processing of affective information in depres-
sion.30–32 Thus, understanding how there might be simulta-
neous dysfunction in multiple networks (see Text Box 2) may
elucidate the neural nature of cognitive vulnerability.37,48,49

According to studies in healthy individuals, the CEN typi-
cally shows increased activation during external stimulus–
driven cognitive and affective information processing, whereas
the DMN shows decreased activation with tasks in which
self-referential processing is not required.35,38 In addition,

emerging evidence shows that the SN, especially the right
fronto-insular cortex, is responsible for switching DMN-
CEN interactions.40,41,50,51 Briefly, during the externally ori-
ented processing there is typically anti-correlated relationship
between the DMN and CEN, which is regulated by the SN
(see Figure 2).43–45 Since vulnerability-stress models of de-
pression emphasize an interaction of cognitive diatheses with
negative life events leading to the development and onset of
depressive episodes,4 investigating abnormal brain responses
to emotional or cognitive stimuli in the rest-task transition pe-
riod (from an internally oriented processing state to an exter-
nally oriented stimulus/task-induced processing state) are
especially important to understanding the emergence of cogni-
tive vulnerability and depression. In our section below on rest-
task transition, we focus on the role of DMN suppression in
support of externally oriented cognition to negative life events
and on the dynamic interaction among three intrinsic net-
works. Previous studies demonstrated that patients with
MDD, at-risk individuals, and remitted depression subjects

Text Box 1
Glossary

Functional magnetic resonance imaging (fMRI)
A form of noninvasive neuroimaging based on blood-oxygen-level-dependent (BOLD) signals in the brain in vivo.

Blood-oxygen-level-dependent (BOLD) signal
The measurement of metabolic activity in the brain based on the magnetic resonance imaging contrast of blood
deoxyhemoglobin levels arising from changes in local blood flow.

Brain network
Network originally referred to a physical system that can be represented by a graph consisting of nodes and edges. In the field
of neuroscience, brain networks can be defined by structural connectivity or functional interdependence. The former is based
on the anatomical linkage of its neurons, whereas the latter refers to joint activity in different brain structures that is
codependent under variation of a functional or behavioral parameter.

Independent component analysis
A computational technique that separates a multivariate signal into additive components based on the assumption that the
components arise from statistically independent non-Gaussian sources.

Network node
Node refers the component of network linked by edges. In the field of neuroscience, the nodes in structural networks are
typically considered to be brain areas defined by cytoarchitectonics, local circuit connectivity, output projection target
commonality, and input projection source commonality. The functional nodes are commonly identified by inferences
concerning the effects of brain lesions on cognitive function (historically) or by relating the joint activation or deactivation
of brain areas to different cognitive functions.

Functional connectivity
The statistical interrelation of variables representing temporal changes in different network nodes. In other words, functional
connectivity refers the temporal correlation of a neurophysiological index measured in different brain areas, with the
consequence that coactivating brain regions are usually identified as functional brain networks.

Large-scale network
These networks are neural systems that are distributed across the entire extent of the brain. Based on the technological and
methodological advances of structural and functional brain connectivity, large-scale network studies focus on revealing how
cognitive functions arise from interactions within and between distributed brain systems.

Intrinsic network
Intrinsic networks are also called intrinsic connectivity networks. Originally, the intrinsic network referred to a large-scale
network of interdependent brain areas observed at rest, which typically were identified by independent component
analysis on BOLD spontaneous fluctuations. Recently, emerging evidence shows that the intrinsic network architecture
also is present across a wide variety of task states, suggesting that this form of interconnectedness is an “intrinsic”
standard architecture of functional brain organization.

X. Wang et al.
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consistently show the abnormal connectivity and interaction be-
tween the DMN and CEN, as well as dysregulation of the SN,
when processing external cognitive or affective stimuli.27,55,56

Therefore, the resting state–related prominent abnormality
of the DMN, along with an imbalance among intrinsic net-
works in the rest-task transition period, has been proposed
as the specific neural susceptibility feature of depression.

The aim of this review is to synthesize current neuroimaging
research to reinterpret the formation of cognitive vulnerability
and subsequent depression from the perspective of intrinsic
organization and cross-network interaction. Based on the
dual-process model, we will describe how abnormal activities
and interactions among the DMN, CEN, and SN can provide
insights into the emergence of cognitive vulnerability and
MDD. Specifically, as first proposed by Sheline and col-
leagues57,58 and subsequently discussed in multiple stud-
ies,24,28,59–61 the hyperactivity in the DMN leads to a negative
associative-processing bias commonly associated with nega-
tive self-referential processes, which forms the neural founda-
tion of cognitive vulnerability to depression. In addition,
abnormal cross-network interactions during rest-task transi-
tions, which include three scenarios, lead to the failure to cor-
rect negative associative-processing bias, thereby facilitating and
stabilizing the cognitive vulnerability (see Figure 2). We will de-
scribe these mechanisms in detail in the next sections. Though

research on functional connectivity and intrinsic networks does
not provide a direct proxy for anatomic/structural connectiv-
ity, the integrative framework presented here extends beyond
the phenomenological dimensions of depression and local
functional impairments. It suggests new research directions
addressing both behavioral and neuronal features in cognitive
vulnerability, and potentially informs the development of tar-
geted interventions for MDD.

ABERRANT RESTING-STATE DMN AND
ASSOCIATIVE-PROCESSING BIAS
The dual-process model suggests that negatively biased self-
referential associative processing is the foundation for cogni-
tive vulnerability to depression.14 Thoughmany vulnerability
factors are associated with biased self-referent information,
maladaptive rumination plays a primary role in mediating
the internalization of negative self-representations and onset
of depression symptoms.62 Research suggests that maladap-
tive rumination is characterized by spontaneous, narrowly fo-
cused, self-referential associative processing.63 In addition,
there is a strong overlap between the DMN and the cortical
network that mediates associative processing on the medial
prefrontal cortex (medial PFC), medial temporal lobe, and
medial-parietal cortex.64 Recently, increasing evidence sug-
gests that maladaptive rumination-related resting-state

Text Box 2
Intrinsic Network Research and the Triple-Network Model

The intrinsic network research originally emerged from the resting-state brain activity or connectivity studies. After Raichle
and Greicius33,34 identified “default mode” network, which exhibits high levels of activity at rest and becomes deactivated
with tasks needing specific goal-directed behavior, Fox and colleagues35 formulated a model in 2005 that included two
tightly locked, but anti-correlated, networks—namely, the task-negative network and task-positive network. In 2007,
Seeley and colleagues36 demonstrated that the task-positive network actually comprises two dissociable networks: an
executive network and a salience network (SN). Based on the previous studies, Menon and colleagues37 proposed a triple-
network model comprising the default mode network (DMN), SN, and central executive network (CEN) as the core
neurocognitive networks, especially for investigating psychopathology in psychiatric and neurological disorders. The
triple-network model is now one of the most widely utilized models for understanding the neural bases of neuropsychiatric
disorders. It is therefore the one that we have used in this review.

The DMN comprises mainly the medial prefrontal cortex and adjoining ventral anterior cingulate cortex, posterior
cingulate cortex, bilateral inferior parietal cortex, and medial temporal lobe.33 The DMN is involved in self-referential/
internally directed information processing and is typically deactivated during external stimulus–driven cognitive processing.38

The CEN comprises mainly the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex, and is responsible
for high-level cognitive functions. The CEN is involved in control processes during goal-directed/externally oriented tasks
and in regulating emotional responses, particularly those mediated via the DLPFC.36,39

The SN is anchored in the anterior insular cortex and dorsal anterior cingulate cortex, and also includes two key
subcortical structures: the amygdala and substantia nigra/ventral tegmental area, which are important for detecting
emotional and reward saliency.40 The SN is involved in detecting and orienting to both external and internal salient
stimuli and events.36 The anterior insular cortex is critically involved in maintaining and updating representations of
current and predictive salience, and contributes to appropriate behavioral responses to salient stimuli by switching
between DMN-related self-referential, and CEN-related goal-directed, cognitive activity.41,42

Although originally identified from resting-state fMRI data, the CEN, DMN, and SN can also be readily identified
across a wide range of cognitive tasks. The responses of those networks increase and decrease proportionately, and often
antagonistically, with the demands of general external cognitive tasks. For instance, the CEN and SN typically show
increased activation during external stimulus–driven cognitive and affective information processing, whereas the DMN
shows decreased activation with tasks in which self-referential processing is not required.33,34 However, the DMN and
CEN can also positively couple when organizing internal self-relevant thought (e.g., autobiographical planning).43–45

Dynamic engagement and disengagement of those core neurocognitive networks are prominent in many cognitive tasks.41,46,47

Cognitive Vulnerability to Major Depression
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DMN activity is associated with the generation of cognitive
vulnerability.60 Specifically, Bar63 states that the neural basis
of rumination is resting medial PFC hyperactivity coupled
with increased functional connectivity between the medial
PFC and anterior cingulate cortex (ACC). This increased
functional connectivity, in turn, suppresses medial temporal
lobe activity and constrains normally broad associative pro-
cessing and the generation of a positive mood, leading to ru-
minative processes and negative mood states.

Neuroimaging studies have supported Bar’s hypothesis
that persistent hyperactivity in the medial PFC and its neigh-
boring ventral ACC regions, as well as their relationship with
the medial temporal lobe, plays a core role in the cognitive vul-
nerability to depression. Berman and colleagues28 examined
the relationship betweenDMN functional connectivity and ru-
mination, both at rest and in a short-term memory task. Dur-
ing the rest period, MDD participants exhibited increased
DMN connectivity in the subgenual ACC, which correlated
with self-report rumination and hyperconnectivity between the
medial PFC and medial temporal lobe. Similarly, a study on
first-episode, unmedicated MDD subjects found significantly
greater functional connectivity between the rostral ACC and
parahippocampal gyrus at rest.65 Recently, Sambataro and
colleagues66 investigated the function of multiple DMN sub-
systems at rest in MDD and showed increased connectivity,
increased low-frequency band spectral power in the medial
PFC, subgenual ACC, and rostral ACC, and aberrant interac-
tions between the rostral ACC and hippocampus. Moreover,

using an unsupervisedmachine-learning approach with a net-
work derived from resting-state fMRI data, including the
subgenual ACC, medial PFC, and superior temporal gyri,
Zeng and colleagues67 demonstrated a highly discriminative
power for accurate identification of MDD. Schilbach’s study
using a meta-analytically informed network analysis68 also
showed the subgenual ACC to be a hub of resting-state hyper-
connectivity in the introspective socio-affective network in de-
pressive individuals. Thus, converging evidence from a number
of brain-imaging studies suggests that the generation of mal-
adaptive rumination is associated with resting hyperactivity in
the medial PFC and with hyperconnectivity between the me-
dial PFC and both the ventral ACC andmedial temporal lobe.

Bar’s hypothesis has been further supported by consistent
evidence of enhanced functional connectivity among anterior
DMN regions in MDD patients. Using independent compo-
nent analysis, Greicius and colleagues69 first explored DMN
abnormalities in major depression and suggested that the
DMN functional connectivity in depression, which was asso-
ciated with the ruminative nature of depressive subjects, was
disproportionately driven by increased activity in the sub-
genual ACC. Importantly, numerous other studies have repli-
cated the basic findings of that study.57,70,71 In addition, using
multivariate Granger causality analysis of resting-state data,
Hamilton and colleagues72 found that medial PFC and sub-
genual ACC activities were mutually reinforcing in MDD
and that the medial PFC-to-subgenual ACC connectivity cor-
related with levels of depressive rumination. In 2012, we

Figure 2. Schematic figure of triple-network model showing the SN-induced coordination between the DMN and CEN. According to this model, the SN
(I) mediates the “switching” between the DMN (II) and CEN (III) to guide appropriate responses to salient stimuli.40 Salience signals are integrated in the
anterior insular cortex of the SN, and then causally influence signals in the DMN and CEN, which support internally directed and externally directed
cognition, respectively.41,47 In light of recent work that suggests the existence of distinct functional subdivisions within the insular cortex,52,53 the right anterior
insular cortex is now thought to be the specific brain region that assists in switching between networks. The large dots show the key nodes of each network in
the triple-network model. AI, anterior insular cortex; CEN, central executive network; dACC, dorsal anterior cingulated cortex; DLPFC, dorsolateral prefrontal
cortex; DMN, default mode network; mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; SN, salience network; PPC, posterior parietal cortex.
Adapted from Uddin (2014)51 and Uddin & Menon (2009).54
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provided the first direct evidence of increased resting-state
functional connectivity in the anterior medial cortex regions
(especially the medial PFC and rostral ACC) that correlated
with rumination scores from first-episode, treatment-naive
MDD patients.24 That finding has been supported by studies
in adolescents experiencing first-episode MDD.25 Using a
unique four-year follow-up sample of children with a history
of preschool-onset MDD, Gaffrey and colleagues73 also dem-
onstrated abnormal subgenual ACC functional connectivity
and found correlations between dysregulated emotional be-
havior and subgenual ACC/medial PFC connectivity. The
subgenual ACC and rostral ACC formed the affective division
of ACC,which is activated by tasks with affective or emotional
content and also deactivated by cognitively demanding tasks.74

Hence, the joint hyperactivity in those DMNnodes, by leading
to ruminative processes, may have a critical role in the forma-
tion of cognitive vulnerability.

Neuroimaging evidence from subjects at risk for MDD
and from nonclinical populations provides additional evi-
dence that the DMN is involved in ruminative processes and
contributes to cognitive vulnerability. Norbury and col-
leagues22 examined resting-state fMRI data from 15 healthy
at-risk participants having a biological parent with MDD
and from 15 healthy controls. Relative to the controls, the
subjects with positive family history showed significantly
greater DMN connectivity in the left dorsomedial PFC, left
medial temporal lobe, orbitofrontal cortex, and left precuneus.
The researchers suggest that this pattern may represent a rumi-
native vulnerability. Similarly, Kross75 reported that rumina-
tion induction in healthy subjects activated a network that
included the subgenual ACC and medial PFC, and that this
network activity was greater during induced rumination than
during “analyze” or “accept” conditions. Moreover, activity
in this network correlated positively with increases in nega-
tive affect during induced rumination. Recently, Liu76 and
Fielder23 provided new evidence independently for the altered
resting-state anterior DMN connectivity in healthy siblings of
MDD patients76 and in women with subclinical depression
but without a history of MDD.23

In summary, emerging evidence strongly indicates that ele-
vated resting-state activity in anterior DMN regions and the
greater functional connectivity among them are associated
with rumination: a narrow associative-thinking pattern and
cognitive vulnerability factor in depression. However, two
points are worth mentioning. First, we propose that abnormal
anterior DMN activity at rest may reflect only brooding, a
subcomponent of rumination that involves negative self-
focus and is hypothesized to be more strongly associated with
depressive symptoms both in concurrent and longitudinal
analyses.77 The other subcomponent of rumination—namely,
reflection—more likely relates to reflective processing in the
dual-process model, which is a purposeful turning inward to
alleviate one’s depressive symptoms.14,78,79 Indeed, Hamilton
and colleagues72 reported that greater DMN activity in MDD
patients at rest was associated with higher levels of brooding

and lower levels of reflection. Berman and colleagues28 re-
ported a similar result. Second, there are some discrepant
studies in the literature, which might be due to the differences
in sample characteristics or analysis methods, such as using
the a priori defined region-of-interest correlation approach
versus whole-brain analyses,79,80 using independent compo-
nent analysis at the group level versus on individual data sets,81

or applying a newly developedmethod.82 Deployment of more
uniform methodologies may help resolve these discrepancies.

ABERRANT NETWORK INTERACTIONS DURING
REST-TASK TRANSITIONS: THREE SCENARIOS

DMN Dominance: Cognitive-Resource Depletion
Although persistent resting-state DMN hyperactivity and
heightened spontaneous rumination are core features of cog-
nitive vulnerability, DMN hyperactivity may also occur in
nondepressed individuals. In nondepressed individuals, how-
ever, that state is typically transient, and they are able to shift
quickly toward task-based deactivation to support stimulus-
driven, goal-directed cognitive processes. In other words,
the resting-state “imbalance” within intrinsic networks may
stop, and the development of cognitive vulnerability and dys-
phoric mood may be suspended.83 However, patients with
MDD consistently show both a lack of DMN suppression
and impaired performance during task-induced states, indi-
cating that the DMN dominance continues and that its re-
sidual activity interferes with subsequent attentional and
cognitive processing. Johnson’s study84 provided direct evi-
dence that patients with MDD show less DMN deactivation
during externally oriented cognitive processing—an effect
that was positively correlated with rumination. Hence, the
authors suggested that depression pathology may involve a
difficulty with disengaging from self-reflection. Grimm and
colleagues85 investigated negative BOLD responses in DMN
regions during the presentation of emotional pictures and re-
ported reduced rest-to-task attenuation of DMN activity in
MDD patients. Importantly, that reduced attenuation was as-
sociated with strong feelings of hopelessness. Furthermore,
Mitterschiffthaler and colleagues86 reported significant en-
gagement of the rostral ACC and right precuneus in MDD
subjects during an emotional Stroop task. The rostral ACC
activation inMDD subjects was positively correlatedwith im-
paired performance on trials with negative words. A hyperac-
tiveDMNhas also been shown to result in impaired cognitive
performance in working-memory tasks, passive viewing, and
implicit-recognition tasks for negative images.56,87,88

Based on the above neuroimaging studies, both the ele-
vated DMN activity during resting state and the increased
DMN activity (less suppression) during task-induced states
play an important role in the pathophysiology of MDD.
The latter is central to the first dual-processing scenario for
developing cognitive vulnerability (Figure 1): reflective pro-
cessing may not override the negatively biased associative
processing when some cognitive load disrupts, which then

Cognitive Vulnerability to Major Depression
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leads to cognitive vulnerability. This finding was confirmed
by Wenzlaff and colleagues89 using a series of behavior tasks
in remitted and currently depressed individuals. Specifically,
although remitted patients did not have a negative bias at base-
line, biased performance under a cognitive-load condition
was predictive of future depressive symptoms. In addition, be-
havioral,90 pupillary,91 and electrophysiological92 data support
the notion that depressed individuals engage in increased intrin-
sic processing (e.g., focusing on negative automatic thoughts
or rumination), which potentially taxes resources that would
otherwise be allocated to cognitive tasks. Recently, Nixon and
colleagues93 reported the first direct evidence of persistent ex-
cessive DMN activity during tasks in remitted MDD patients,
which suggests that task-based DMN hyperconnectivity may
result in cognitive and attentional bias and increase the risk
of depression. Therefore, DMN dominance may be the neural
basis for the role of cognitive-resource depletion in the develop-
ment of vulnerability and then depression.

Recent work on DMN-CEN anti-correlation provides po-
tential evidence for this mechanism. The optimal attunement
between the DMN and CEN is thought to reflect efficient in-
trinsic brain organization.35,94 During the processing of ex-
ternally directed stimuli, the deactivation of the DMN and
the increased activation in the CEN occur concurrently and
timely for ensuring appropriate and successful responses.36,46

In the rest-task transition period, however, both depressive
and at-risk individuals show abnormal DMN dominance,
which induces decreased DMN-CEN anti-correlation and
subsequently depletes cognitive resources.95 This phenome-
non may arise in two ways. In the first, exaggerated sponta-
neous DMN activity may persist following the rest-task
transition, reduce recruitment of cognitive-control resources,
and prevent distraction from rumination.25,96 This DMNper-
sistence is evidenced by the rumination-related lack of DMN
suppression in a non-self-referential task.84 Similarly, using a
new quantitative method to compute the extent to which
DMN activity levels exceed task-related network activity over
the course of the resting-state scan,Hamilton and colleagues72

showed that increasing levels of DMN dominance were asso-
ciatedwith higher levels of brooding and lower levels of reflec-
tion in MDD. In addition, Davey and colleagues97 reported
that the subgenual ACC–ventromedial PFC connectivity in
MDD increased in resting state and that this change in func-
tional connectivity could predict the relative activity of CEN
regions, thus suggesting that dysfunctional connectivity with
the subgenual ACC may influence executive/attentional pro-
cesses. Thus, the attenuated DMN-CEN anti-correlation
stemming from abnormal DMN dominance in the rest-task
transition may induce cognitive-resource depletion leading
to cognitive vulnerability to depression.

The second way in which abnormal DMN dominance in
MDDmay arise is from automatic, effortless, negatively biased
information processing at a preconscious level, which activates
the DMN and attenuates the influence of otherwise distracting
cognitive processing.Many studies related to negative stimulus

processing mentioned above support this mode of developing
DMN dominance.56,86,98 Such studies consistently reported
heightened responses in the amygdala, along with higher activ-
ity in the DMN and lower activity in the CEN. Moreover,
spontaneous activity in the amygdala has been shown to posi-
tively predict the activity of the medial PFC and to negatively
predict the activity of the middle frontal gyrus.99 A longitudi-
nal study further showed that amygdala-ventromedial PFC
connectivity was predicted by early-life stress and associated
positively with depressive symptoms in female adolescents.100

A recent study further reported increased, sustained amygdala
reactivity involving the involuntary processing of salient nega-
tive information associated with all the dimensions of trait ru-
mination.101 Thus, aberrant DMN dominance during prior
processing of negative emotional stimuli in MDD may be
caused by excessive input from the SN nodes, and be associ-
ated with aberrant attention allocation and switching. We will
interpret the related mechanisms in the next section.

In summary, the DMN-dominant state during rest-task tran-
sitionmay arise from the persistence of resting DMNactivity or
from quick activation of the DMN during negative stimulus
processing. This persistence depletes cognitive resources and
leads to a sustained negative cognitive bias, which then facili-
tates the development of cognitive vulnerability to depression.

Impaired SN Switching Between DMN and CEN:
Expectancies Are Not Violated
In Menon’s triple-network model,37 the SN—which is an-
chored in the dorsal anterior cingulate cortex, fronto-insular
cortex, amygdala, and ventral striatum—is involved in
bottom-up detection of salient events and in switching be-
tween other large-scale networks to facilitate appropriate
allocation of attentional and cognitive/executive resources
when a salient event is detected. Using the Granger causality
analysis method in both of resting-state and task-state data,
Sridharan and colleagues41 discovered that the right fronto-
insular cortex–ACC network, especially the right fronto-
insular cortex, plays a causal role in DMN-CEN switching.
Recently, and using a novel technique for analyzing resting-
state data, Goulden and colleagues50 independently validated
the role of SN in driving the switching between the DMN and
CEN. Another study involving a combination of fMRI and
diffusion tensor imaging data also supported the critical role
of the right fronto-insular cortex in switching between brain
networks for complex, flexible cognitive processing.47 Fur-
thermore, by combining transcranial magnetic stimulation
(TMS) and fMRI, Chen and colleagues102 successfully dem-
onstrated that single-pulse TMS of an SN site enhanced both
within-SN and within-CEN connectivity, whereas TMS stim-
ulation of a CEN site enhanced only within-CEN psycho-
physiological connectivity. In summary, the SN switching
role between the DMN and CEN (see Figure 2) has been
strongly supported by converging evidence in healthy subjects
and highlights the possibility that the atypical engagement of
the SN is a feature of neuropsychiatric disorders.51
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A growing body of evidence demonstrates that the SN’s
switching function is impaired in MDD and at-risk individ-
uals.103,104 For instance, medication-naive adolescents with
MDD showed reduced activation in the fronto-insular cortex
and dorsolateral PFC during an attention-switching task.105

Strigo and colleagues106 further demonstrated that in MDD,
altered right fronto-insular cortex function, along with in-
creased activity in the ventromedial PFC and rostral ACC
and decreased activity in the dorsolateral PFC, is associated
with an impaired ability to effectively prepare for envi-
ronmental changes. Similarly, Hamilton and colleagues72

examined the right fronto-insular cortex response during
initiation of ascents in DMN and CEN activity and showed
that right fronto-insular cortex plays a differential role in
DMN/CEN dominance switching in MDD subjects versus
controls. This model is further supported by Manoliu and
colleagues’ recent study.107 In addition, through comparing
task-based brain function of individuals with high or low risk
of developing MDD, Peterson and colleagues104 described a
neural system, including insular and other nodes in cortical
attention circuits, as the risk endophenotype for MDD. Re-
cently, Kaiser and colleagues56 compared the neural activation
during emotion-word and color-word Stroop tasks in partici-
pantswith subclinical depression. They suggested that affective
interference stems from the increased salience of negative emo-
tional information, coupled with the difficulty in shifting re-
sources toward the external environment. That study further
supported the SN’s abnormal function in switching between
the DMN and CEN in vulnerable individuals.

Besides the direct measurement of activity or functional
connectivity of the SN nodes inMDD and vulnerable individ-
uals, many studies have showed that the abnormal switching
function of the SN is associatedwithmood-congruent, negative-
response biases, a well-known vulnerability factor empha-
sized in Beck’s cognitive model of depression.108 Specifically,
the amygdala contributes to the biased processing of both
explicitly and implicitly negative emotional stimuli in at-risk
depressive individuals,31,109,110 MDD,111–114 and remitted
MDD patients.115 The anterior insula and dorsal ACC also
participate in the formation of these biases.116,117 A recent
fMRI study showed that MDD patients develop a pessimistic
attitude toward the emotional meaning of external events—
an attitude associated with abnormal activation in the me-
dial PFC, dorsolateral PFC, and insular cortex.118 Therefore,
the misinterpretation of external cues by the insula due to
unpleasant previous experiences may be a central underlying
mechanism of depression-related dysregulation. Similarly, in
a voxel-wise, whole-brain meta-analysis, Hamilton and col-
leagues119 showed that MDD patients had elevated activity
in the amygdala, insula, and dorsal ACC, but decreased activ-
ity in the dorsolateral PFC, during the process of negative
emotional stimuli. The authors suggested that in depression,
negative information could induce a heightened neural re-
sponse in the SN but fail to be propagated to the CEN for
contextual processing and reappraisal. Indeed, in 2008, a

pathway-mapping analysis provided direct fMRI evidence
for that hypothesis: regulation of emotion through the amyg-
dala to the ventrolateral PFC could predict reappraisal failure
and more sustained negative emotion.120 To sum up, several
core regions in the SN are critically involved in the formation
of mood-congruent negative-response biases and subsequently
in the change of CEN activity associated with cognitive control.

The aforementioned SN-related, mood-congruent, negative-
bias processing could play a role in the second scenario of failing
to correct biased associative processing in the dual-process
model (see Figure 1): when the results of associative processing
are congruent with one’s negative internal expectancy (e.g., neg-
ative self-referential schemas or representations related to one’s
self-worth), expectancies will not be violated. By contrast, when
healthy individuals with optimism biases confront negative
external stimuli, cognitive conflict would be recognized auto-
matically, and attention would then be disengaged from the
negative thoughts. Previous studies showed that conflict sig-
naling was reduced in individuals with negative thoughts/
mood due to their mood-congruent attention and memory
biases.121 Accordingly, in individuals at risk for depression,
attentional resources could not reallocate appropriately to
disengage from the situation; instead, the resources continue
to focus on self-referring negative information.122 Along the
same lines, observations in healthy individuals with high
brooding scores show that more attentional control is needed
to successfully disengage from negative information.123 There-
fore, the “impaired disengagement” of attention based on the
mood-congruent negative bias in MDD would facilitate not
only sustained maladaptive rumination but also impaired cog-
nitive performance. In summary, we propose that in the con-
text of mood-congruent, negative-bias processing, impaired
SN switching between the DMN and CEN underlies, at least
in part, the cognitive vulnerability to depression.

Failure to Effectively Activate CEN: Reflective Processing
Does Not Adequately Adjust Biased Associative Processing
In the third scenario of the dual-processmodel, whichmay in-
volve a failure of CEN activation (see Figure 1), it is posited
that cognitive vulnerability to depression is facilitated when
reflective processing does not adequately adjust output from
associative processing. In other words, when an individual
tries to regulate emotion voluntarily (i.e., to reappraise)
through reflective processing but fails, an associative bias is
maintained or even amplified. Two cognitive-vulnerability
factors are likely involved in reflective processes related to
emotion regulation: reflective rumination74 and depressogenic
attributional styles7 (i.e., regarding the self and the causes and
consequences of negative events) based on hopelessness theory.
When vulnerable individuals confront negative events, both of
those factors will guide them to spontaneously use emotion-
regulation strategies that could be directed against the in-
creased negative emotion stemming from elaboration on the
meaning of unpleasant events. However, failure to regulate
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will lead the individual to fall into more negative cognition, de-
pressive rumination, and dysphoria.

Emotion-regulation deficits are a central characteristic of
depressed individuals. Though previous studies showed that
different types of emotion-regulation strategies (e.g., automatic
vs. voluntary, distraction vs. reappraisal) are associated with
different neural mechanisms, both strategies are subserved by
common top-down control areas in the CEN (especially the
dorsolateral PFC node) to effectively allocate attention to the
external stimuli.124,125 Furthermore, numerous studies suggest
that aberrant voluntary emotion-regulation inMDD is related
to hypoactivity in CEN nodes.126,127 However, recent evi-
dence has also pointed to hyperactivity in DMN components.
Smoski and colleagues128 found that remitted MDD showed
significantly greater rostral ACC activation and simulta-
neously decreasedmidfrontal gyrus activation during the reap-
praisal of sad images (in contrast to attending to sad images).
Similarly, Sheline and colleagues58 reported that when subjects
with MDD reappraised negative pictures actively, widely dis-
tributed elements of their DMNs failed to deactivate. Erk129

and Johnstone130 also found that MDD patients show sig-
nificantly diminished responses in the dorsolateral PFC, but
increased activation in DMN nodes, when performing an
effortful reappraisal task for negative emotion. In a small
study including only 12 MDD patients, Dillon and col-
leagues131 reported recently that dorsolateral PFC activity
correlated inversely with depressive severity, though no group
differences in reappraising negative pictures were found. An-
other follow-up study of remittedMDD participants employing
sad mood provocation has added new evidence showing that
expansive medial PFC reactivity can predict subsequent de-
pressive relapse over an 18-month follow-up period.16 The
authors linked medial PFC reactivity in remitted MDD par-
ticipants to inefficient recruitment of the PFC in attempts to
cognitively regulate negative emotion. Recently, two studies
in remitted MDD reported similarly reduced PFC reactivity
during negative feedback, which was associated with the rumi-
nation and possibly impaired the adaptive reappraisal of nega-
tive experience.132,133 Thus, emerging evidence suggests that
during the cognitive regulation of negative events, the failure
to regulate and the generation of cognitive vulnerability are
not only associated with the decreased activation in CEN
nodes but also with increased activation in DMN nodes.

Since CEN hypoactivity and DMN hyperactivity could be
occurring simultaneously during impaired cognitive regula-
tion in MDD, it raised a question whether attenuated CEN
modulation is a primary effect of CEN hypoactivity or a sec-
ondary effect of interference from DMN activity. In a recent
study combining TMSwith fMRI, Chen and colleagues102 re-
ported direct evidence of a causal regulatory relationship pri-
marily from the CEN to the DMN. Specifically, single-pulse
excitatory stimulation of a CENnode (posteriormiddle frontal
gyrus) induced negative DMN connectivity with the CEN,
whereas inhibitory repetitive TMS to the same stimulation site
induced the disinhibition of DMN activity on the medial PFC.

Two other TMS studies presented further evidence that re-
petitive TMS on the dorsolateral PFC could modulate in-
teractions between the DMN and CEN by normalizing
depression-related DMN hyperconnectivity.134,135 As more
anti-correlation between the two networks was induced, the
clinical efficacy of the TMS increased. Interestingly, in a re-
cent double-blind, six-month trial examining changes in the
neural circuitry involved in emotion regulation after antide-
pressant treatment, only changes in CEN nodes (dorsolateral
PFC and Brodmann area 10) that were are engaged while sub-
jects performed a negative affect–regulating task correlated with
changes in depression severity over the following six months.136

In summary, previous studies suggest that failure to effec-
tively activate the CEN and the corresponding reduced effect
on the DMN mainly contribute to the unsuccessful volun-
tary regulation of negative emotion, thus allowing negative
cognitive/affective responses to persist and facilitating the de-
velopment of depressive vulnerability.

CONCLUSIONS AND FUTURE DIRECTIONS
In this review, we used a dual-process framework and built
upon the literature of intrinsic networks to integrate well-
established MDD cognitive-vulnerability factors and corre-
sponding neural mechanisms. We propose that abnormally
increased resting-state DMN activity and connectivity (mainly
in anterior DMN regions) and corresponding depressive rumi-
nation contribute to the development of cognitive vulnerabil-
ity. Furthermore, in the period of rest-to-task transition, three
kinds of aberrant network interactions may facilitate the occur-
rence of cognitive vulnerability. Specifically, when confronting
negative life events or stimuli, DMN dominance (persisting
due to increased resting activity and facilitated by automatic, bi-
ased information processing), abnormal SN-mediated switching
between the DMN and CEN (related to a negative schema and
mood-congruent negative bias), and failure to effectively acti-
vate the CEN (related to reflective rumination, negative attribu-
tion style, and corresponding emotion-regulation impairment).
A focus on interrelated networks and brain activity changes be-
tween rest-task transitions provides an approach for future
research into inter-individual differences in vulnerability and re-
silience. Several outstanding questions remain, however, and
need to be explored in depth.

First, although an increasing number of neuroimaging
studies have investigated cognitive vulnerability to depression,
more systematic research is required to test and confirm the va-
lidity of our framework. For instance, longitudinal fMRI stud-
ies with comprehensive assessment of cognitive-vulnerability
factors would allow us to investigate the intrinsic network
changes in predicting future occurrences of depression. To
date, only a few studies have compared brain system activity
among never-depressed individuals with vulnerability factors,
currently depressed individuals, and remitted depressed indi-
viduals. Amore systematic research approach, including both
cross-sectional and longitudinal studies, is needed to develop
the models for mapping the neural patterns.
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Second, the neurobiological underpinnings of network
dysfunction and impaired interactions remain poorly under-
stood. Recently, however, some theoretical hypotheses have
been elaborated for the complex dynamics between large-
scale neural systems. For example, Anticevic and colleagues95

proposed a model for the synaptic mechanisms of altered
DMN suppression and DMN-CEN interactions: the anti-
correlation between CEN and DMN activities during task
performance is derived from the reciprocal network interaction
through net inhibitory long-range projections, which are re-
lated to disruptedNMDA conductance onto GABAergic inter-
neurons. According to this model, local disinhibition induces
hyperactivity of DMN-type microcircuitry and hyposensi-
tivity to long-range suppressive inputs from task-activated,
cognitive-related microcircuits—which precludes silencing
the already high-firing DMNat task onset. The specific mech-
anisms of GABAergic/glutamatergic neural interaction, as
well as their regulation on the brain network activity, need
to be explored in future research.

Third, despite the strong evidence for the clinical effective-
ness of psychotherapy in treatingMDD, the neural underpin-
ning of depression-specific psychotherapies remains unclear.
Our framework may help to explore this issue. For instance,
in cognitive-behavioral therapy, patients are given explicit in-
structions on how to regulate their negative thoughts and
emotions, which may increase CEN activity and decrease
DMN activity, and thereby enhance patients’ ability to com-
plete reflective processing successfully.137–139Moreover, mind-
fulness therapy, which highlights present-moment awareness
and acceptance,may alter activity in the SN, especially anterior
insular activity, by decreasing the incongruence between
the outcome of associative processing and the individual’s ex-
pectations.140,141 Based on a meta-analysis, Ma124 further
proposed that antidepressant medication and cognitive-
behavioral therapy have different neuropsychological me-
chanisms: the latter targets prefrontal function by increasing
inhibitory executive control, whereas the former may act
more directly on the network associated with abnormal emo-
tion generation/experience. Furthermore, a recent review pro-
posed that psychotherapy may facilitate recovery and
plasticity at the brain network level after antidepressant drugs
reactivate a window of juvenile-like plasticity in the adult
cortex.142 Ongoing composite research on cognitive vulnera-
bility, treatment effects, and brain network–level plasticity is
very promising.

Fourth, evidence shows some overlap of dysfunctional
neural processing among different disorders. For instance,
similar DMN abnormalities reflecting internally oriented at-
tention and thought are found in both depression and schizo-
phrenia.143 Our diagnostic categories are heterogeneous and
likely encompass multiple biologically distinct entities. Future
work using the research domain criteria on brain system dys-
function may provide valuable insights into which patients
demonstrate these network-level abnormalities and how
those relate across diagnoses.

Finally, much work remains for relating network models
explicitly to cognition and neural computation.144–146 The in-
trinsic functional connectivity and network model undoubt-
edly provides a unique and powerful tool to provide insight
into the organization of distributed association brain networks,
especially as an organizing framework for characterizing bio-
logical substrates in mental disorders. Some methodological
problems remain, however, in studying such networks—such
as the sensitivity of functional connectivityMRI to headmotion
and physiological artifacts,147,148 and the effect of global signal
regression on detecting anti-correlation between networks.46,149

Difficulties also exist with the definition of node/edge and the
interpretation of network measures; for examples, as an indi-
rect, relative measure of neural-activity fluctuations, func-
tional connectivity MRI measures have no proven biological
interpretation. Therefore, more studies are needed to pro-
mote the translation from the network properties to the real-
ities of behavior and neurobiology.

In summary, a growing body of neuroimaging research re-
veals that cognitive vulnerability, the most generally accepted
psychological risk factor for depression, is associated with
neural functional abnormalities. Under a dual-processing
framework, we integrated the MDD-related cognitive-
vulnerability factors in the context of an intrinsic network
and cross-network interaction perspective. Although the hy-
pothesis presented in this review remains somewhat specula-
tive, it provides a unique understanding of the link between
in vivo brain measurements and cognitive vulnerability, and
it enhances our insight into the biological underpinnings in
the development, maintenance, and treatment of depression.
The integrative framework suggests a paradigmatic shift in
cognitive-vulnerability research and potentially informs the
development of targeted interventions for MDD.
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