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Independent Component Analysis (ICA) is one of the most popular techniques for the

analysis of resting state FMRI data because it has several advantageous properties

when compared with other techniques. Most notably, in contrast to a conventional

seed-based correlation analysis, it is model-free and multivariate, thus switching the

focus from evaluating the functional connectivity of single brain regions identified a priori

to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that

simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis

characterizes RSNs in terms of spatially distributed patterns of correlation (typically

by means of simple Pearson’s coefficients) and thereby confounds together amplitude

information of oscillatory activity and noise. ICA and other regression techniques, on

the other hand, retain magnitude information and therefore can be sensitive to both

changes in the spatially distributed nature of correlations (differences in the spatial pattern

or “shape”) as well as the amplitude of the network activity. Furthermore, motion can

mimic amplitude effects so it is crucial to use a technique that retains such information to

ensure that connectivity differences are accurately localized. In this work, we investigate

the dual regression approach that is frequently applied with group ICA to assess group

differences in resting state functional connectivity of brain networks. We show how

ignoring amplitude effects and how excessive motion corrupts connectivity maps and

results in spurious connectivity differences. We also show how to implement the dual

regression to retain amplitude information and how to use dual regression outputs to

identify potential motion effects. Two key findings are that using a technique that retains

magnitude information, e.g., dual regression, and using strict motion criteria are crucial for

controlling both network amplitude and motion-related amplitude effects, respectively, in

resting state connectivity analyses. We illustrate these concepts using realistic simulated

resting state FMRI data and in vivo data acquired in healthy subjects and patients with

bipolar disorder and schizophrenia.
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INTRODUCTION

Spatial independent component analysis (ICA) has emerged
as a popular tool for investigating brain network functional
connectivity measured using functional magnetic resonance
imaging (FMRI) (McKeown et al., 1998; Cordes et al., 1999;
Calhoun et al., 2001; Kiviniemi et al., 2003; Greicius et al., 2004;
van de Ven et al., 2004; Beckmann et al., 2005). This technique
aims to identify underlying hidden spatio-temporal processes
that co-occur to give rise to themeasured blood oxygenation level
dependent (BOLD) FMRI signals from the brain. These spatio-
temporal processes can correspond to spontaneous fluctuations
in resting state networks (RSNs) during wakeful rest, to task-
locked alterations in brain networks during task performance,
to scanner artifacts that occur during the imaging period, or to
physiological noise. The appeal of the spatial ICA is that no time-
series model of brain activity is required for the analysis—in that
sense, it is model-free—and as a consequence, the spatial ICA
has the potential to identify spatio-temporal signal sources that
are not well-characterized or well-understood. These properties
are well-suited to the analysis of FMRI measurements using a
resting state paradigm in which there is no task per se (for
example, resting with eyes open or closed, during sleep, or during
pharmacologic manipulations) to investigate the resting state
functional connectivity (RSFC) of brain networks.

The standard approach for investigating RSFC of brain
networks implements a multi-subject analysis in which a group-
average spatial ICA, or group ICA (GICA), is done on the entire
set of FMRI data concatenated across all subjects (Calhoun et al.,
2001; Beckmann and Smith, 2004). This technique will identify
the collection of networks that are common to the entire set
of subjects. Because the output spatial maps are common to all
subjects, further processing is necessary to compare functional
connectivity of any given network between groups of subjects or
conditions. For this purpose, the subject-specific network maps
corresponding to each group ICAmap must be identified in each
subject, similar to a contrast map from a task FMRI analysis.
These subject-specific network maps capture between-subject
variability in the “shape,” or spatial pattern, of the network and
can be used in a higher-level general linear model analysis to
investigate group differences in functional connectivity.

In addition to the shape of an RSN, the amplitude of an
RSN (e.g., the magnitude of the BOLD activity in the RSN)
has been shown to convey important information regarding
resting state activity. For example, positron emission tomography
(PET) task activation studies have long reported decreases in
cerebral blood flow (CBF) in a certain collection of brain regions
when comparing task to passive rest conditions (Raichle et al.,
2001). This collection of brain regions also has high cerebral
metabolic rate of oxygen consumption (CMRO2) and CBF at
rest and, and even early on, the magnitude of the decreases in
CBF during brain activation were noted to be likely related to
task difficulty, suggesting that magnitude of deactivation carries
important information (Shulman et al., 1997). This collection of
brain regions is now well-known as the default mode network
(DMN), the physiology of which has been studied extensively
using PET (Gusnard and Raichle, 2001; Raichle and Snyder,

2007). The function of the DMNhas also been studied extensively
with BOLD FMRI during wakeful rest (Greicius et al., 2003) using
the seed-based connectivity analysis approach first presented by
Biswal et al. (1995), and using ICA-based approaches (Beckmann
et al., 2005; Smith et al., 2009) and other methods (Andrews-
Hanna et al., 2010). BOLD FMRI depends on CBF, CMRO2, and
cerebral blood volume, thus results from PET studies would also
predict effects on BOLD signal amplitudes in the DMN during
task performance.

Importantly, now several studies have shown that the
amplitude of BOLD activity within the DMN, measured as the
standard deviation of the BOLD signal timecourse, is related
to task-load during brain activation (McKiernan et al., 2003;
Singh and Fawcett, 2008) and is sensitive to different resting
state conditions (eyes open with and without fixation vs. eyes
closed; Yan et al., 2009 using the power spectrum). Other brain
regions also show similar amplitude-related effects. For example,
Bianciardi et al. (2009) and Jao et al. (2013) have shown that the
amplitude of resting state BOLD signal oscillations in the visual
cortex is smaller with an eyes-open fixation resting condition
relative to resting with eyes closed. Jao et al. (2013) also reported
differences in amplitude of BOLD signals from nodes of the
DMN during these two states. Resting FMRI amplitudes can be
affected by pharmacologic stimulation (Kiviniemi et al., 2005),
by disease (Zang et al., 2007; Vargas et al., 2013) and can also
reliably predict task FMRI responses in activated brain regions,
for example, during motor and breath hold tasks (Kannurpatti
et al., 2012). In addition, Kannurpatti and Biswal (2008) proposed
the use of resting state fluctuation amplitudes to scale task-
induced BOLD responses for calibrated BOLD, as a proxy for
breath holding or 5% CO2 inhalation. Thus, the amplitude of
the resting FMRI signal likely also reflects an important aspect
of RSFC and preserving such amplitude information within any
inferential procedure is important to more fully characterize
functional connectivity within and between subjects.

The seed-based correlation approach (SBCA) for investigating
RSFC originally relied on simple time series correlation (to
detect similarities, e.g., synchronous fluctuations, between the
timecourse from a seed-region and the timecourses from
different parts of the brain). However, it is now common practice
to implement SBCA as a voxel-wise multiple regression analysis
that is capable of handling confounders such as physiological and
subject motion. SBCA will reveal the full connectivity profile of
a given seed region, showing all of the brain regions that are
functionally connected to the seed in the connectivity map. As a
result, it is challenging to differentiate the distinct networks with
which a seed region may be functionally connected. One would
have to visually “parse” in a purely qualitative way those blobs out
into separate networks for interpretation in the context of which
networks were connected with the seed. In addition, network
amplitude effects will not be accurately reflected using such an
approach, with (voxel-wise estimated) correlation coefficients not
reflecting amplitude at all (all other things being equal), and
regression coefficients in this framework being estimated relative
to the seed-timecourse amplitude itself. To disentangle functional
connectivity and amplitude of multiple networks, in e.g., the
repertoire of brain networks known to be “active” at rest in
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the human brain (Beckmann et al., 2005; Smith et al., 2009),
multivariate regression approaches that analyse the behavior of
all networks simultaneously, for example, dual regression [DR;
Beckmann et al., 2009; Filippini et al., 2009; implemented in
FMRIB Software Library (FSL)], are most suitable. In this case,
a full set of brain network maps derived from a GICA are
used with DR to derive the subject-specific spatial maps and
timecourses corresponding to each GICA spatial map, which
maintains sensible control over the contribution of amplitude
effects while also providing information regarding network shape
and disentangling the effects of multiple networks. Crucially,
motion effects can also be a source of amplitude effects by
causing abrupt and potentially large spikes or discontinuities in
FMRI timeseries, introducing variance into the timecourse that
can mimic an amplitude effect. Many studies have shown that
motion is a major source of variability in functional connectivity
studies that can lead to erroneous results when comparing groups
of subjects (Power et al., 2012; Satterthwaite et al., 2012; Van
Dijk et al., 2012). Thus, it is crucial to investigate functional
connectivity within a framework that maintains control over any
amplitude effects that may be present in the data, whether real
network effects or motion-related.

In this report, we investigate the use of FSL’s group
ICA with dual regression (GICA-DR) approach for assessing
group/condition differences in functional connectivity. In
contrast to group SBCA, there is no need for specifying either
subject-specific seed timecourses from regions of interest or
confound regressors to capture subject-specific noise effects in
the FMRI data. Instead, the GICA identifies the spatiotemporal
signals associated with RSNs (e.g., networks of interest), artifacts,
and noise that are inherent in the FMRI data. It does so by
decomposing the FMRI data in a purely data-driven way into a
set of independent components (ICs), with each IC consisting of
a spatial map (that is statistically independent from the other IC
maps), and a corresponding timecourse. For resting state data,
the IC timecourses from a GICA are generally not interpretable
because it is common to do data reduction prior to the GICA.
However, the spatial maps identified from GICA characterize
RSNs that are common to all the subjects, providing a more
comprehensive view of the functional hierarchy of the brain
(Beckmann et al., 2005), while also identifying artifacts that are,
in principle, being identified as components separate from RSNs.
Although there are somemethodological challenges to ICA (Cole
et al., 2010) there is now a consensus that spatial ICA is a powerful
analytical tool for investigating functional connectivity across
multiple functional domains, such as sensory, motor, cognitive,
and limbic systems, simultaneously. Once the group IC maps
have been identified by GICA, DR is used to estimate the subject-
specific network timecourses and the subject-specific spatial
maps for each corresponding GICA map. The resulting subject-
specific timecourses and spatial maps can be used to compare
functional connectivity between groups/conditions. Some studies
have discussed or compared SBCA and ICA-based approaches
for assessing group differences in brain network functional
connectivity (Cole et al., 2010; Van Dijk et al., 2010; Smith et al.,
2014) and have investigated the test-retest reliability and other
aspects of GICA-DR (Zuo et al., 2010; Allen et al., 2012). In this

study, we focus on how to use GICA-DR to investigate RSN shape
while maintaining control over amplitude effects.

Group ICA with Dual Regression (GICA-DR)
The GICA identifies a set of IC maps that are common to the
entire population (e.g., FMRI data from every subject is included
in the analysis) and the dual regression is a mathematical tool
that utilizes these IC maps as network templates to identify
the corresponding functional connectivity maps in each subject.
Although it is generally recommended to use the output spatial
maps of a GICA of the dataset under investigation in the DR, dual
regression is a generic method in the sense that it can be used to
assess the functional connectivity of networks (or parcellations)
that are identified using any strategy—not just a GICA of the
FMRI data. For example, a set of template networks could be
derived from a GICA of an independent set of subjects, from an
atlas, or using functional localizers, although these templates may
not contain information related to specific artifacts or sources of
noise in the data under study, as would a GICA of the original
data.

Once the template maps (on the basis of GICA or else)
have been identified, the dual regression analysis proceeds in
two stages (Figure 1). In the first stage of the dual regression
(Figure 1A), each subjects’ 4D FMRI dataset, Y, is reorganized
into a 2D (N voxels × T timepoints) data matrix, and the
unthresholded full set of template maps are regressed into this
data matrix. e.g., let the template maps be the estimated IC spatial
maps from a group ICA, Ŝ, reorganized into a 2D (N voxels×M
components) matrix, then these Ŝ are the independent variables
or predictors in a multivariate multiple linear regression:

Y = ŜBTC + E1 (1)

with:

B̂TC = pinv
(

Ŝ
)

Y (2)

pinv denotes the matrix pseudoinverse, Y ∈ RNxT is the subject’s
FMRI data, E1 ∈ RNxT is the matrix of errors, and B̂TC ∈ RMxT

is the matrix of stage 1 timecourses, one for each IC map.1 Each
timecourse in B̂TC reflects the average timecourse computed over
voxels in the corresponding IC spatial map after taking into
account the contributions of the other components to each voxel’s
timecourse. The regression parameters, B̂TC, are sensitive to the
scale of the maps in Ŝ. However, for dual regression, Ŝ are the
same across all subjects.

In the second stage of the dual regression (Figure 1B), the
network-specific timecourses from the stage 1 regression are used
as predictors in a second multivariate multiple linear regression
into the individual subject’s FMRI data2. This second regression
identifies the subject-specific spatial maps, BSM :

Y
′

= B̂
′

TCBSM + E2 (3)

1These output timecourses are not the same as the timecourses that are output
from a GICA of resting state data using FSL MELODIC. The GICA timecourses
from MELODIC are derived by inverting the initial PCA reduction done prior to
the group ICA.
2All predictors are mean centered such that the mean of each predictor is zero, but
the units are still on the original scale unless otherwise transformed.
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FIGURE 1 | The dual regression proceeds in two stages. (A) In the first stage, subject-specific timecourses (blue circle) for each template network are extracted

using a multivariate spatial regression of the template maps against each subjects FMRI data. (B) In the second stage, the subject-specific timecourses from stage 1

are used in a second multivariate regression against the subjects’ FMRI data to identify the subject-specific spatial maps (red circle) corresponding to each template

network of interest.

Which gives:

B̂SM = Y∗ pinv
(

B̂TC
)

(4)

The estimated B̂SM ∈ RNxM have a spatial map for each corres-
ponding IC templatemap. Thesemaps are the subject’s functional
connectivity maps for the networks in Ŝ.

Generally, it is the case that RSN timecourses output
from stage 1 of the dual regression (Equation 2) will have
different amplitudes, measured as the standard deviation of
the timecourse, by virtue of these timecourses being average
timecourses (weighted sums) computed over the voxels in the
RSN (after partialling out other network temporal effects). When
these timecourses are regressed into the FMRI data in the second
regression (Equation 3), the regression coefficients at each voxel
(Equation 4) are estimated with respect to that subject’s RSN
amplitude or “scale”. Comparing the voxel values in B̂SM (e.g.,
the regression coefficients) across subjects is confounded by this
apparent difference in network amplitude across subjects. Note
that this is not the case for the scale of the Ŝ since these maps are
used for dual regression in all subjects and thus any scaling in the
spatial maps will be constant across subjects.

Standardizing the stage 1 timecourses by dividing by the
standard deviation of the timecourse prior to estimating
Equation 3 obviates the network amplitude (or scale) problem,
with regression coefficients that are interpreted as a change in Y
per unit standard deviation in X. Subsequently, the voxel-wise
regression coefficient for the group analysis will be evaluated

in the same units of standard deviation in X across subjects.
This is applicable for a network-wide amplitude effect, in which
the amplitude of the whole network is affected (e.g., different
across subjects). However, another potential problem arises when
a region, or node, within a network has an amplitude that
is different from the other nodes in the network. In the case
of such a “within-network” amplitude effect, a different scale
problem arises for the voxels within the network itself—with
their regression coefficients being estimated on different scales
with respect to each other. Standardizing to change in Y per unit
standard deviation in X places all voxels on an equivalent scale,
while also placing all subjects on an equivalent scale. As an aside,
stage 1 timecourse normalization differs from normalizing the
individual voxel’s fMRI timecourses prior to the dual regression.
In the latter case, even after normalization of the individual voxel-
wise timecourses, the subject-specific timecourses from the first
stage of the dual regression are still a weighted sum of the data
time courses—even if all original time series are zero mean and
unit standard deviation, their weighted sum does not remain
normalized in eithermagnitude or variance upon dual regression.

As a consequence, to investigate amplitude effects—or to
ensure validity in the case of unknown amplitude effects—
the timecourses must be normalized by the amplitude prior to
estimation of the B̂SM using Equation 3, which will give “semi-
standardized” regression coefficients, B̂∗SM :

B̂∗SM = Y ∗ pinv
(

A−1 ∗ B̂TC
)

(5)
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With A = diag{aB̂TC }, e.g., a diagonal matrix with the standard
deviations, or amplitudes ai, of each stage 1 timecourse on the
diagonal. In FSL dual regression parlance, normalization of these
timecourses is referred to as design normalization.

Importantly, B̂∗SM are sensitive to both network amplitude
and shape effects and moreover, are the only accurate measure
for assessing group differences in functional connectivity in the
presence of within-network amplitude effects. See Appendix 1
(Supplementary Material) for a more detailed explanation of this
using a simple two-voxel network example.

There are two issues to keep in mind when using B̂∗SM . The
first is that there is a price for including the extra amplitude
information. The spatial maps fed forward to the group analysis
will reflect variations in shape, and at the voxel level, the
between-subject variations in amplitude. The extra random
effects variance from the amplitude will make it more difficult
to detect an effect since both effects contribute to the random-
effects between-subject variation. The second is that the B̂∗SM
are sensitive to subject motion that manifests as large-amplitude
spikes in the timecourses and, as with any RSFC analysis, careful
attention must be given to any motion effects in the data. That
being said, at least this type of amplitude effect will be accurately
localized (which cannot be said for the impact of motion on
B̂SM or when using SBCA). The fact that motion can mimic
amplitude effects likely underlies the overall greater sensitivity
of functional connectivity analyses to motion and may be (at
least partly) the cause of very unpredictable effects that motion
has been shown to have on functional connectivity outcomes.
(Satterthwaite et al., 2012; Van Dijk et al., 2012; Power et al., 2014,
2015).

A summary of key points is that:

1) B̂SM , or the raw regression coefficients of Equation (4), do not
contain information related to the network-wide amplitude
and thus can’t be used to investigate network amplitude.

2) B̂SM will be wrong if there is a within-network amplitude
difference (e.g., when a node in a network has higher or lower
amplitude than other nodes in the network).

3) B̂SM also will be wrong in the presence of motion effects that
mimic amplitude effects by increasing variance of network
timecourses (e.g., motion effects will not be localized only to
truly affected voxels).

4) Amplitude information is a source of extra random effects
variance.

5) With design normalization, any amplitude effect, whether a
real network-related effect or one that arises due to motion
effects, will be accurately localized in the dual regression stage
2 maps, B̂∗SM .

In this report, we illustrate these concepts using simulated
and real data. In the simulations, we manipulate ground truth
timecourses and spatial maps derived from real FMRI data
to create known group amplitude and shape differences in
simulated data. The resulting simulated data are then analyzed
using DR to derive B̂SM and B̂∗SM to show how amplitude and
shape differences are localized in each. Amplitude effects also
arise through impulsive subject movements, thus an analysis

of in vivo data is used to illustrate the consequences and
best practices in using dual regression in the presence of
motion.

MATERIALS AND METHODS

Simulations: Overview
Eight spatial maps corresponding to well-established RSNs
(previously reported by Beckmann et al. (2005) and available
at http://www.fmrib.ox.ac.uk/analysis/royalsoc8/) were used as
ground truth spatial patterns, and timecourses derived from real
BOLD FMRI resting state data acquired in 36 healthy subjects
were used as ground truth timecourses to construct ground truth
resting state FMRI data for 36 simulated subjects that had 8
“active” RSNs (plus noise). Manipulation of derived timecourses
and/or ground truth spatial maps in half of the simulated
subjects was done to create group differences in functional
connectivity.

Ground Truth Spatiotemporal Processes
Resting state BOLD FMRI data collected in 36 healthy
participants at the University of Oxford Centre for Clinical
Magnetic Resonance Research using a 3T Siemens Trio scanner
(Filippini et al., 2009) were used for the simulations. The
University of Oxford Centre for Clinical Magnetic Resonance
Research Ethics Committee approved the original study and
all participants gave informed written consent to participate
in the original study. Scan parameters were: Field of view
= 224 mm, 3 × 3 × 3.5 mm resolution, TE/TR/FA =

28/2000ms/89◦, total scan time = 6:04 min. The first four
frames were discarded for magnetic field equilibration. FMRI
data were pre-processed using FSL (FMRIB’s Software Library,
www.fmrib.ox.ac.uk/fsl, Smith et al., 2004) to perform head
motion correction using FLIRT (Jenkinson et al., 2002); non-
brain removal using BET (Smith, 2002); spatial smoothing
by a Gaussian kernal (FWHM 6mm); grand-mean intensity
normalization of the entire 4D dataset by a single multiplicative
factor; and highpass temporal filtering by subtraction of a
Gaussian-weighted least-squares straight line fitting with sigma
= 150 s (Niazy et al., 2011). Finally, registration of each FMRI
dataset to the corresponding high-resolution structural scan was
carried out using FLIRT. Registration of the high-resolution
structural images to MNI152 standard space was achieved
using FLIRT, with further refinement using FNIRT non-linear
registration (Smith et al., 2004). All subjects’ four-dimensional
timeseries data were transformed into standard space at 2 ×

2 × 2 mm3 resolution using the registration transformation
matrices.

Ground truth spatial maps: The spatial network maps from
Beckmann et al. (2005) were used as the ground truth spatial
maps, hereafter referred to as the roysoc8 maps. These eight
maps correspond to (A) medial visual network (MVN), (B)
lateral occipital, (C) auditory, (D) sensorimotor, (E) default mode
network (DMN), (F) executive control network (ECN), and (G–
H) right- and left-lateralized fronto-parietal networks (RFPN and
LFPN, respectively).
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Ground truth network timecourses: The roysoc8 maps were
regressed against one of the real pre-processed FMRI datasets
to derive 8 corresponding “ground truth” RSN timecourses per
subject. The voxel-wise standard deviations estimated from the
residuals of the regression (stdres) for each subject were also
calculated.

Simulated Resting State FMRI Data
Simulated single subject resting state FMRI data were created
by computing the product of the roysoc8 maps and one set of
ground truth RSN timecourses, and adding (at each time point)
voxel-wise random Gaussian noise distributed as N (0, std2resI)
plus the voxel-wise means of the real FMRI timeseries. Simulated
data created from half of the real FMRI data (18 subjects) were
designated as Group A data, the other half (18 subjects) as
Group B.

For Group B data, manipulation of the timecourses and/or
associated spatial maps prior to multiplication of timecourses
with the spatial maps was done to simulate between-subject
variability in RSN amplitude and shape as follows3:

• Network-Wide Amplitude Difference (Figure 2A): For each
subject, the ground truth timecourse for the MVN was
multiplied by 1.1 to simulate a 10% greater network-wide
amplitude in Group B relative to Group A.

• Within-Network Amplitude Difference (Figure 2B): For each
subject, the ground truth timecourses from voxels in posterior
cingulate cortex (PCC) region of the DMN were multiplied by
1.5 to simulate a 50% greater amplitude of the PCC relative
to other regions in the DMN. This enforces a within-network
group amplitude difference, e.g., a within-network difference
around the mean network amplitude.

• Shape (Figures 2C,D): Voxels in selected regions of the ECN
(basal ganglia and thalamus) were “connected” to the LFPN in
Group B subjects by giving that subset of voxels the timecourse
for LFPN instead of the timecourse for the ECN. The net
effect is that the basal ganglia and thalamus are connected
to ECN in Group A (Figure 2C) and to LFPN in Group B
(Figure 2D), resulting in a group difference in shape in both
ECN and LFPN. Note that the timecourses used here where
not normalized to unit standard deviation and thus there will
also be a small amplitude difference in the overall network
timecourses.

Note that each amplitude and shape effect impacts a single map
when assessing differences in functional connectivity between
Group A and Group B, with a network-wide amplitude difference
in MVN, a within-network difference in DMN, and shape
differences in ECN and LFPN. The other maps did not have
any simulated group differences. All effects were included in
a single simulated Group B dataset to also show that dual
regression can separate out multiple different network amplitude
and shape effects that may be present in any given FMRI
dataset.

3Our specific choices of RSNs, amplitude, and shape differences were based
simply on demonstrating the ability of different statistics described in Section
Introduction to accurately reflect amplitude and shape differences.

FIGURE 2 | Simulated between-group amplitude and shape

differences. (A) Network-wide amplitude effect in MVN: Voxels in the entire

network are assigned a ground truth timecourse for each subject in Group A

(upper panel; dark green) and 1.1*ground truth timecourse for those in Group

B (lower panel; bright green). (B) Within-network amplitude effect: For subjects

in Group A, all voxels in the network are assigned a network timecourse (upper

panel; dark green), but for Group B, network voxels in dark green are assigned

the ground truth timecourse and voxels in bright green are assigned 1.5*

ground truth timecourse (lower panel, C,D) Network shape difference: in

Group A, basal ganglia and thalamus are connected with ECN (C, upper

panel, red circle) and in Group B, this region is connected with LFPN (D, lower

panel, blue circle).

Group Comparisons of RSN Functional Connectivity

using Dual Regression
Dual regression (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression)
was done as follows. At stage 1, the roysoc8 spatial maps were
regressed against the simulated FMRI datasets to obtain the
subject-specific timecourses (SSTC). The SSTC outputs are text
files, one per subject, containing a matrix of values that have one
column per spatial map and one row per time point.

At stage 2 of the dual regression, the SSTC (for all networks)
were regressed against each of the simulated datasets to obtain the
subject-specific spatial maps (SSSM). Each stage 2 ouput is a 4D
spatial maps data file per subject (N = 8 components in this case).
Dual regression was run without and with normalization of the
SSTC (each timecourse normalized to unit standard deviation),
resulting in SSSM that were B̂SM or B̂∗SM , respectively.

Once the B̂SM and B̂∗SM were computed, estimation and
inference on the two different sets of statistic maps was done
using FSL Randomise with a two-group unpaired t-test to assess
differences between Group A and B in each network and for each
statistic (B̂SM and B̂∗SM), with 5,000 permutations and cluster-
mass based thresholding (with cluster forming threshold Z =

2.3), to achieve a corrected family-wise error rate, p < 0.05.
SSTCs are evaluated for accuracy by comparing the SSTC

with the ground truth timecourses. The correlation between each
ground truth timecourse and the corresponding dual regression
timecourse for every network should be close to 1. We also
compared the amplitudes (standard deviations) of the ground
truth timecourses with the amplitudes of the SSTC for the MVN
(the component with the 10% amplitude effect) and the other
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FIGURE 3 | Analyses of the in vivo data. Two different GICA-DR analyses

were done, one that included all subjects, regardless of level of motion (All),

and a second that included participants with <1.5mm motion in any direction

(Low Motion). Different group level models were conducted to assess motion

effects, e.g., with participants grouped either by level of motion or by

diagnostic category (DC).

networks. For MVN, the amplitudes of SSTC and ground truth
timecourses should be equal in Group A, and for Group B,
the amplitudes of the SSTC should be equal to 1.1 times the
amplitudes of the ground truth timecourse for each subject.
There will also be an amplitude effect in the DMN because the
SSTC is a weighted sum of all voxel’s timecourses in the DMN
and some voxels have a larger amplitude than others, although
this is not easily estimated as is the network-wide effect. For the
other five networks, SSTCs should be the same as the ground
truth timecourses.

The results of the group-level analysis of the B̂SM and
B̂∗SM spatial maps should show group differences in MVN,
DMN, ECN, and LFPN that reflect the voxel-wise differences in
amplitude/synchrony as shown in Figure 2, with no differences
in functional connectivity in the other four networks.

In Vivo Resting State FMRI: Overview
An in vivo resting state FMRI dataset from 13 healthy controls
(HC), 14 individuals with bipolar disorder (BD), and 12
individuals with schizophrenia (SZ), for a total of 39 subjects, is
used to illustrate how motion can distort functional connectivity
results. Analyses to assess differences in functional connectivity
between the three diagnostic categories was done two ways: (1)
using all of the data (N = 39), which included several subjects in
each group with motion in excess of 1–2 voxels, and (2) using
a subset of the data that included only subjects with less than
1.5mm motion (N = 25). These two analyses demonstrate how
excess motion can impact GICA maps and group differences in
functional connectivity and how using strict motion criteria can
improve findings even at the expense of sample size. In addition,
we ran a group analysis that compared “high” vs. “low” motion
subjects (with these two groups matched for the same number of
participants from each diagnostic category) to show how motion
can cause spurious group differences in functional connectivity.

As an aside, we are not interested in the neurobiological
differences between individuals with different diagnoses per se
and will not be discussing our findings in this context; details of
the participants and neurobiological research findings have been
reported previously (Öngür et al., 2010; Chai et al., 2011).

Data Acquisition
MRI data were collected at the McLean Imaging Center at
McLean Hospital using a Siemens Trio 3T scanner. The local
Institutional Review Board of McLean Hospital approved the
original study and all participants in the original study gave
written informed consent. High-resolution anatomical images
were acquired for registration purposes using an MPRAGE
sequence with 256× 256, 1× 1.3mm in-plane resolution, and 1.3
mm slice thickness. Resting state BOLD FMRI data were acquired
while subjects rested quietly with eyes open. Scan parameters
were: 42 slices, 3.5 × 3.5 × 3.5 mm resolution, TE/TR/FA =

24/2,500 ms/82◦, interleaved slice acquisition, 64 × 64 matrix,
total scan time = 10 min. The first four frames were discarded
for magnetic field equilibration.

Pre-processing
Data pre-processing was done similarly to the simulated data
and included: Head motion correction using FLIRT; non-brain
removal using BET; spatial smoothing by a Gaussian kernal
(FWHM 5 mm); grand-mean intensity normalization of the
entire 4D dataset by a single multiplicative factor; and highpass
temporal filtering by subtraction of a Gaussian-weighted least-
squares straight line fitting with sigma = 150 s. Finally,
registration of each subject’s FMRI data to their high-resolution
structural scan was carried out using FLIRT. Registration of
the high-resolution structural images to MNI152 standard space
was achieved using FLIRT, with further refinement using FNIRT
non-linear registration. All subjects’ four-dimensional timeseries
data were transformed into standard space at 2 × 2 × 2mm3

resolution using the registration transformation matrices.

GICA-DR
Figure 3 shows an illustration of the analyses.

All Analysis: For this analysis, all participants’ data (N = 39)
were included in the All:GICA, dual regression, and group-level
models, regardless of level of motion. In the All:Motion group-
level analysis, a two group GLMwas set up to compare functional
connectivity between two artificially constructed groups based
on participant’s absolute mean displacement being either smaller
than 1 mm (“low motion”; N = 20) or larger than 1 mm (“high
motion”; N = 19), irrespective of diagnostic category. With 1
mm as the cutoff, nearly equal numbers of participants from each
diagnostic category are included in each group (N = 7 HC in
both, N = 6 SZ in both, N = 7 BPD in “low” and N = 6 BPD
in “high”), thus diagnostic category was matched across the two
groups. In the All:DC group-level analysis, a diagnostic category
three-group GLM was done to compare functional connectivity
between the patient groups and the healthy controls. This analysis
included some participants with high levels of motion in each
group.
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FIGURE 4 | Simulation Results. Boxplots of the correlations between the stage 1 and ground truth timecourses for each network (19 subjects in each group). Data

in Group B had amplitude and shape differences in some networks.

Low Motion (LM) Analysis: This analysis used a stricter
motion criteria, removing all participants with >1.5 mm motion
prior to the LM:GICA and subsequent dual regression and group-
level GLM (leaving 6 BD, 10 HC, and 9 SZ). An additional HC
participant was also excluded from this analysis even though
the max absolute mean displacement was <1 mm because a
rotational movement of 0.006 radians around the z axis by
the subject led to a large signal change in the dual regression
timecourses (this is further discussed in the results section). A
single group GLM was done, LM:DC, which was a diagnostic
category-based three-group GLM to assess group differences
between patient groups and the healthy controls. This analysis
did not include any participants with high levels of motion and
can thus be compared with All:DC to assess how motion can
corrupt functional connectivity results. For All:DC and LM:DC,
we use results for HC vs. SZ which have approximately the same
number of subjects in each group for both analyses.

All:GICA and LM:GICA: The corresponding FMRI data for
the subjects included in each GICA (N = 39 for All:GICA
and N = 25 for LM:GICA) were concatenated together in

the temporal dimension and the group ICAs were done using
FSLMELODIC (Multivariate Exploratory Linear Decomposition
into Independent Components) Version 3.09 (Beckmann and
Smith, 2004; Beckmann et al., 2005). The number of components
was fixed to twenty for both analyses to give maps similar to
those reported in Beckmann et al. (2005). To obtain a stable
decomposition of the data, each GICA was run eight times
followed by a meta-level GICA fed by all of the spatial maps from
the 8 decompositions (Smith et al., 2009;Wisner et al., 2013). The
meta-level analysis for the All:GICA estimated 17 components
and for the LM:GICA estimated 20 components.

Dual Regression and Group-Level Statistical Analysis: The
dual regressions for the All and Low Motion analyses were
implemented as described in the simulations, to obtain the
statistic maps (B̂SM , B̂∗SM) for each RSN for each subject for
each analysis. Estimation and inference on group differences in
functional connectivity using B̂SM and B̂∗SM was done using FSL
Randomise (5,000 permutations, cluster-based thresholding, Z
= 2.3 cluster forming threshold) for each network at p < 0.05,
corrected.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 115



Nickerson et al. Dual Regression for Functional Connectivity

FIGURE 5 | Simulation Results. Each datapoint shown in the plots is the amplitude of the original RSN timecourse vs. the amplitude of the stage 1 timecourse for

the subject assigned that timecourse (Group A: blue; Group B: red). For MVN, the network-wide amplitude difference between Groups A and B is reflected by the

different slopes (Group A: y = x and Group B: y = 1.1*x; x = original timecourses). For the DMN, the within-network amplitude differences between groups are also

reflected by datapoints in Group B not laying on the same line as those in A. All other networks show no group differences in amplitude.

RESULTS OF SIMULATIONS: GROUP
DIFFERENCES IN RSN SHAPE AND
AMPLITUDE

Accuracy of Stage 1 Timecourses
Figure 4 shows a boxplot of the correlation coefficients between
each stage 1 timecourse and each ground truth timecourse for
each network for subjects in Groups A and B.We did not alter the
shape of the temporal trace for any of the RSNs in the simulated
data and the dual regression is able to faithfully reproduce
the temporal response of the ground truth timecourses, with
the correlations between stage 1 timecourses and ground truth
timecourses all near 1. Figure 5 shows the amplitudes of the stage
1 timecourses are as expected, with: A 10% difference in network
amplitude in the MVN, reflected in the slopes of the lines of best
fit for Group A and Group B, a difference in amplitude (e.g.,
slope) between the two groups in the DMN, and no difference
in amplitudes for any of the other networks.

Group Differences in RSN Functional Connectivity:

Amplitude Effects
Figure 6 shows differences in functional connectivity between
Group A and Group B for the MVN, which had simulated
network-wide amplitude differences. In this and all subsequent
brain image figures, three orthogonal slices are displayed in
each vertical panel, with the roysoc8 RSN spatial map shown
in green overlaid onto the MNI 2 mm standard brain image.

Statistically significant positive differences are shown in red-
yellow and negative differences are shown in blue-lightblue. All
results are significant at p < 0.05 corrected. Figure 6A shows
differences assessed using B̂SM as inputs to Randomize, and
Figure 6B shows those using B̂∗SM . B̂SM are not sensitive to

network-wide amplitude effects, whereas B̂∗SM are sensitive to
network-wide amplitude differences, with the voxels showing
significant differences lying only within the network that were
simulated to have an amplitude effect (Figure 2A).

Figure 7 shows results for comparison of Group A and Group
B for the DMN. Figure 7A shows group differences assessed
using B̂SM as inputs to Randomize, Figure 7B shows those using
B̂∗SM . Although the PCC region was the only region with an
amplitude difference between Groups A and B in the DMN
(Figure 2B), using B̂SM would lead one to conclude that there
were group differences throughout the entire network, with some
regions showing greater connectivity in Group B relative to
Group A (red-yellow) and others showing decreased connectivity
in Group B relative to Group A (blue-light blue). B̂∗SM accurately
localizes within-network amplitude differences to only the PCC
region with the correct sign (e.g., B > A).

Group Differences in RSN Shape
Figures 8 show the results for RSNs with simulated shape
differences (shown in Figures 2C,D). Both statistics are capable
of accurately reflecting the differences in functional connectivity
when those differences are due only to shape differences (or
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FIGURE 6 | Simulation Results. (A) Comparison of functional connectivity

between Group A and Group B using B̂SM does not show any group

differences in the MVN (e.g., B̂SM are not sensitive to within-network

amplitude effects). (B) B̂∗SM display within-network amplitude effects

(red-yellow, B > A, p < 0.05).

synchrony between the timecourses from different areas in the
network) and not amplitude. In Figures 8A,B, the ECN is more
strongly connected to caudate/thalamus regions in Group A,
using either B̂SM or B̂∗SM , respectively. Figures 8C,D show that
the LFPN is more strongly connected with caudate/thalamas in
Group B, with B̂SM and B̂∗SM , respectively. In both cases, B̂∗SM have

a slightly lower p-values than B̂SM (e.g., brighter yellow colors
indicate more significant differences than orange colors) because
of the extra random effects variation due to including amplitude
information in B̂∗SM , but not in B̂SM . No other networks showed
group differences in shape.

Results of the in Vivo Analysis: Motion and
Functional Connectivity
All:GICA vs. LM:GICA
Visual inspection of the independent component spatial maps
shows that removing participants with greater motion generally
resulted in improvements in the spatial maps, although the
GICA maps from both analyses highly resembled (via spatial
cross correlation) the roysoc8 maps for 7/8 major networks
(all but LFPN, which showed some variability). This is not
surprising given that ICA is effective for denoising FMRI data by
identifying and separating out effects due to both physiological
and subject motion (McKeown et al., 1998; Kiviniemi et al., 2003;

FIGURE 7 | Simulation Results. The DMN (green) had a within-network

amplitude difference in Group B, but not in Group A, in the posterior cingulate

ROI. (A) B̂SM shows group differences in connectivity throughout the network

(yellow, B > A; blue, A > B (e.g., false positives); p < 0.05. (B) B̂∗SM accurately

localize the group differences only to posterior cingulate (yellow).

Beckmann et al., 2005; Salimi-Khorshidi et al., 2014; Du et al.,
2016). However, there were some subtle differences in the two
sets of maps that demonstrated that the LM:GICA generally
produced the more reasonable maps. For example, Figure 9
shows the MVN from the All:GICA (Figure 9A) and from the
LM:GICA (Figure 9B). While the MVNs identified from both
analyses do largely resemble each other, in the LM:GICA map,
smaller bilateral regions in the lateral geniculate nucleus and the
thalamus are identified in the MVN (Figure 9B) that are not
seen in the All:GICA map (Figure 9A). The presence of these
regions in MVN is consistent with known connections of LGN
and thalamus with visual cortex (Castelo-Branco et al., 1998;
Kwon and Jang, 2014), indicating the Low Motion MVN is more
reasonable. The LGN were observed in the All:GICA map at a
lower threshold of Z= 1.63, but this threshold also showed many
other widespread regions (although we did not directly compare
these two maps for statistically significant differences).

Spurious Group Differences in RSN Functional

Connectivity Due to Motion
The All:Motion analysis, which compared RSN functional
connectivity in individuals with <1 mm motion vs. those with
>1 mm motion, showed several networks with spurious group
differences in functional connectivity, for inference on both B̂∗SM
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FIGURE 8 | Simulation Results. Group differences in the shape of the ECN obtained using (A) B̂SM and (B) B̂*SM (red-yellow; A > B; p < 0.05), and in the LFPN

using (C) B̂SM and (D) B̂*SM (red-yellow; B > A). Both statistics accurately reflect the group difference in shape in ECN and LFPN in the absence of amplitude effects.

and B̂SM . For example, Figure 10A shows that the ECN (green)
has widespread group differences in functional connectivity (red-
yellow; using B̂∗SM). Since the two groups being compared are
matched for diagnostic category, these spurious group differences
are likely due to the effects of motion. Inspection of the results
for All:DC (Figure 10B; SZ > HC) also shows differences in
functional connectivity in this network in regions that overlap
the map in Figure 10A, suggesting that motion is affecting the
clinical group comparison as well. Indeed, if a strict motion
criteria is applied as in the LM:DC analysis (Figure 10C), the
group differences in functional connectivity between SZ and HC
seen in Figure 10B are no longer observed, even at very low
thresholds. Although we did attempt to keep the number of
subjects in each analysis comparable, there were fewer subjects
in the LM:DC analysis (9HC/9SZ) than in the All:DC analysis
(14HC/12SZ), which could also reduce the ability to detect group
differences, although lowering the statistical threshold still did
not show any group differences in LM:DC.

Further evidence that motion-related amplitude effects
underlie the observed differences in network functional
connectivity observed in the All:Motion and All: DC analyses
(Figures 10A,B, respectively) comes from inspection of the
dual regression network timecourses for each subject in the
high (>1.5 mm) vs. low (<1.5 mm) motion groups. The stage
1 timecourses (Figure 11A vs. Figure 11B) clearly show that
many subjects in the high motion group have greater amplitudes
(or standard deviations) in the network timecourses. Inspection
of the stage 1 timecourses for SZ and HC included in the
All:DC vs. LM:DC analyses (Figures 11C,D) shows that there

were several HC and SZ with spikes and other motion-related
temporal features (identified by comparison with the motion
timecourses) included in All:DC that were removed for LM:DC.
Another point of note is that the timecourse with the large wide
deviation over several TRs in panels Figure 11A (red line) and
Figure 11C (blue line) closely resembles the timecourse of the
McFLIRT estimated z-rotation for that subject (r = −0.76),
however the estimated rotation was less than 0.006 radians,
which did not result in any appreciable effect in the mean
displacement (not shown). Inspection of the raw FMRI data
for this subject clearly showed the rotation and the motion
correction was not able to appreciably fix it. This suggests that
the dual regression procedure can be sensitive to small levels
of motion and that inspection of the stage 1 timecourses can
provide key information as to whether or not motion may be
corrupting functional connectivity results.

Loss of Sensitivity to Group Differences in RSN

Functional Connectivity Due to Motion
Including participants with higher levels of motion (>1.5 mm)
in All:DC obscured functional connectivity differences between
SZ and HC in MVN that were revealed in the LM:DC with
these subjects removed. Figure 12 shows the differences in
functional connectivity for SZ > HC (p < 0.05 corrected) using
B̂∗SM for LM:DC. No statistically significant group differences in
this network were observed in the All:DC. For LM:DC, group
differences using B̂SM (not shown) were observed in some regions
that overlapped with B̂∗SM . However, there were also differences

in white matter and brainstem that were not observed with B̂∗SM ,
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FIGURE 9 | In Vivo Results. MVN from: (A) All:GICA (green, Z > 2.3) and (B)

LM:GICA. The LM:GICA map also includes lateral geniculate nucleus

(crosshair) and bilateral thalamus, which are not observed in the All:GICA MVN.

and some of the bilateral differences, for example, in the nucleus
accumbens, that were observed using B̂∗SM were not observed

in the B̂SM results, underscoring the fact that inference on B̂∗SM
and B̂SM will generally not give the same results. Since B̂∗SM
are able to accurately localize any amplitude effects, whereas
B̂SM will mislocalize any within-network amplitude effects, it is
recommended to only infer on B̂∗SM maps even though amplitude
and synchronicity effects cannot be disambiguated without
conducting additional analyses. Notably, the group differences
in bilateral LGN and nucleus accumbens, that were observed
using B̂∗SM are in agreement with what is know about visual
disturbances in schizophrenia (Silverstein and Keane, 2011; Yoon
et al., 2013), providing additional support that B̂∗SM are most
valid.

Inspection of the stage 1 timecourses for theMVN (Figure 13)
shows that, in All:DC, the amplitudes of MVN timecourses
are generally higher in HC vs. SZ (Figures 13A,B). After
removing high motion subjects from the analysis, the within-
group variability in the amplitudes is reduced (Figures 13C,D).

DISCUSSION

The GICA-DR approach is a powerful tool for identifying group
differences in brain network functional connectivity that reflects

differences in both network shape and network amplitude.
Findings from our simulations based on creating ground truth
group differences in network shape and amplitude from real
resting state FMRI data show that:

1. Dual regression identifies subject-specific network
timecourses with good temporal accuracy in the presence of
amplitude and shape effects, assuming no subject variability
in location of networks or network nodes.

2. B̂SM SSSMs (e.g., raw regression coefficient maps from stage
2 of the dual regression without normalization of stage 1
timecourses) should not be used for inference at the group
level because they are insensitive to network-wide amplitude
effects, yet will mis-localize any within-network amplitude
effects.

3. Using B̂∗SM subject-specific spatial maps (SSSMs) from stage
2 of the dual regression (e.g., with normalization of stage
1 timecourses) for inference at the group level accurately
localizes network-wide and within-network amplitude effects,
as well as network shape differences.

While it may be tempting to use both B̂SM and B̂∗SM together to
disambiguate amplitude effects (e.g., with the first being sensitive
only to shape and the second sensitive to shape and network-wide
amplitude effects), it is not recommended to do so because of
the possibility of within-network amplitude effects. In this case,
the B̂SM maps will simply be incorrect. Since one cannot rule
out the possibility of within-network amplitude effects without
applying additional analyses, the implication is that within the
GICA-DR framework, only combined amplitude and shape can
be assessed. B̂SM cannot be used to disambiguate the two effects.
Thus, the important contribution of this paper is to show that
design normalization of stage 1 timecourses is not a convenient
method for teasing apart shape or network amplitude differences,
it is a necessary step in the dual regression procedure to deal
with any existing amplitude effects in a disciplined way to give
group differences that are valid and localized correctly. That is,
B̂SM can’t be used to infer shape differences since there is the
potential to obtain mis-localized amplitude effects masquerading
as connectivity differences in these maps. Another consequence
of timecourse normalization is that amplitude effects cannot be
studied separately from shape effects and vice-versa within the
dual regression framework. On the other hand, resting state
network amplitude has been shown to be an important network
property that may be more interpretable relative to task FMRI,
for which amplitude conveys meaningful information. Thus,
including amplitude information together with shape can be a
strength of the dual regression with timecourse normalization.

Our findings from the in vivo analyses illustrate that
motion can mimic amplitude effects and that such affects
can dramatically impact the connectivity maps, which is well-
documented for seed-based connectivity analyses but less well-
characterized for GICA-DR. Fortunately, the stage 1 timecourses
are useful for identifying subjects with motion effects that have
propagated into the connectivity analysis that could drive group

differences, even motion effects that are not necessarily large and
remain undetected during standard quality assurance. Using B̂∗SM
for inference on functional connectivity will not only accurately
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FIGURE 10 | In Vivo Results. (A) All:Motion analysis: the ECN (green) shows statistically significant differences in functional connectivity for high motion > low

motion (red-yellow; p < 0.05). (B) All:DC analysis: the ECN shows group differences for SZ > HC (p < 0.05) in regions overlapping with the motion effects in (A). (C)

Low Motion analysis: group differences in ECN between SZ and HC are no longer observed, even at very low statistical thresholds. Note that the IC map shown in A

and B is from the All:GICA. The IC maps shown in C is from the LM:GICA.

localize real network amplitude effects, because B̂∗SM are also
sensitive to motion-related amplitude effects, any motion effects
will at least be accurately localized and thus not lead to spurious
mis-localized group differences in other regions or networks
that may be attributed to group differences in connectivity.
That is, it is easier to detect motion-related amplitude effects
in the group difference maps when these effects are accurately
localized (with B̂∗SM), e.g., as rings around the brain edges or large
differences at tissue interfaces, vs. beingmis-localized throughout
the image (with B̂SM), not giving the same visual appearance that
is suggestive of motion artifacts.

In the context of other published findings, there have
been a few studies that have assessed dual regression for
back-reconstructing SSTC and SSSM for test-retest reliability
and to assess performance in the presence of shape and
amplitude differences (Zuo et al., 2010; Allen et al., 2012;
Wang et al., 2013; Wisner et al., 2013). In the study by Zuo
et al. (2010), they found that GICA-DR produced subject-
specific brain network spatial patterns that hadmoderate-to-high
reliability and reproducibility. They also reported that GICA-DR
showed superior performance over applying single-subject ICA
combined with template-matching procedures to identify the

subject-specific brain networks. Wang et al. (2013) investigated
the temporal signatures of RSNs that were generated from stage
1 of the dual regression and found that some univariate metrics
such as entropy and the amplitude of low frequencies fluctuations
(ALFF) of the stage 1 timecourses were reliable and reproducible.
The neurometric profiles of RSNs identified using GICA-DR
have also been shown to be highly reproducible and replicable
across samples, and highly reliable within individuals for some
RSNs (Wisner et al., 2013). For example, the right-lateralized
fronto-parietal, auditory, and visuospatial networks had such a
profile, suggesting that these networks are consistent with the
profile of a trait. Other networks had a neurometric profile
of high reproducibility and replicability, but low reliability in
individual subjects. Left-lateralized fronto-parietal, emotion, and
reward-related networks show this profile and, consequently,
were interpreted as networks whose connectivity could change
depending on the specific state of the individual.

Allen et al. (2012) investigated the ability of ICA combined
with back-projection to investigate resting state networks in
the presence of inter-subject variability in simulated FMRI
data with spatial, amplitude, and temporal variability. They
report that temporal concatenate GICA implemented with
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FIGURE 11 | In Vivo Results. Stage 1 timecourses for the ECN for: (A) All:Motion, lowest motion subjects (<1.5 mm) and (B) All:Motion, highest motion subjects

(>1.5mm); (C) HC included in the All:DC analysis and (D) SZ included in the All:DC analysis; (E) HC included in the LM:DC analysis and (F) SZ included in the LM:DC

analysis. Note that the timecourses for the bipolar patients are included in B but not in (D) or (F).

the GIFT toolbox combined with back-projection (Calhoun
et al., 2001; http://icatb.sourceforge.net) and GICA-DR in FSL
should generally perform extremely well for studying large-scale
networks, but will be less effective when activations are very small
in spatial extent in the presence of spatial variability. However, it
is important to note that the general equivalence between the two
approaches holds only for the case in which subject-level PCAs
implemented in GIFT are not used for data reduction, only for
whitening. If this is not the case, there is a potential for PCA bias
(Beckmann, 2011).

While the GICA with back-projection in GIFT or dual
regression in FSLmay perform similarly under certain conditions
in empirical studies, there is a very important distinction between
back-projection techniques and dual regression. Back-projection
techniques are heuristic approaches, [whose outcomes can
depend strongly on the within-subject dimensionality reduction
(Smith et al., 2014)] while the dual regression is a generative
model that provides a statistical framework for assessing group
differences in functional connectivity (Beckmann, 2011). As such,
while back-projection approaches may be tuneable to give good

results in empirical studies using specific conditions in simulated
data (Erhardt et al., 2011; Allen et al., 2012), we advocate the dual
regression approach as being theoretically well-principled and
practically “safer.” The issue is not one of empirical validation,
but one of assessing how the choice of parameters for the dual
regression impacts the interpretability of the results with respect
to group differences in functional connectivity.

One limitation of the current study is that, in the simulations,
we investigated only one level of difference between groups in
amplitude effects and shape; namely, we selected a network-wide
amplitude difference of 10%, a within-network difference of 50%
on one region of the network, and a difference in shape that
reflected an absent connection of a region in one network in one
group, with the region being connected to a different network
in the other group. As such, our results do not speak to the
sensitivity and specificity of the statistics we tested over a range
of effects and signal levels, nor do our simulations incorporate
spatial variability at the subject level. Our primary purpose in
this work was to show that design normalization is necessary
for dual regression to retain and reflect amplitude (either real
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FIGURE 12 | In Vivo Results. Results. LM:DC showed differences in the connectivity of MVN (green), with SZ > HC, in lateral and medial geniculate nuclei, bilateral

thalamus, nucleus accumbens, insula, regions in PFC, and ACC, and precuneus (red-yellow, p < 0.05).There were no group differences for HC vs. SZ in this network

for the ALL:DC analysis.

FIGURE 13 | In Vivo Results. Results. Stage 1 timecourses from dual regression can be used to identify corruption by motion. The upper four panels show the stage

1 timecourses for (A) All:DC HC, and (B) All:DC SZ subjects (which included subjects with larger motion effects in both groups). Timecourses for (C) LM:DC HC and

(D) LM:DC SZ subjects, in which subjects with >1.5 mm motion were removed. The lower four panels show corresponding boxplots of the amplitudes of the

timecourses for each group.

network or motion-related) information accurately. There is
evidence that spatial variability across subjects degrades the
performance of DR for identifying subject-specific timecourses

and spatial maps (Allen et al., 2012; Kim et al., 2012). While
techniques such as iterated DR (Kim et al., 2012) may be
necessary to derive accurate subject-specific timecourses and
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network maps, especially in the case of high-dimensional GICA
for finer functional parcellations, the issue of amplitude effects
at the DR stage must still be addressed. Simulating realistic
resting state FMRI data with various ground truth sources of
inter-subject variability can be used to further investigate these
issues.

In sum, B̂∗SM (from dual regression with normalization of
stage 1 timecourses) accurately reflect both network amplitude
and motion-related amplitude effects in group functional
connectivity analyses. However, B̂∗SM may require slightly larger
sample sizes given that when these spatial maps are forward to the
group analysis, they will have additional random effects variance
from the amplitude that will make it more difficult to detect group
differences. Inference using raw multiple regression coefficients
(without normalization of stage 1 timecourses) can lead to mis-
localized group differences, spurious group differences, or loss of
sensitivity to real group differences. A stricter motion criterion is
recommended for RSFC analyses, and inspection of the subject-
specific timecourses from stage 1 of the dual regression is also
recommended as part of the quality assurance to assess the effects
of small movements (less than a single voxel) that may have large
effects on the group difference maps. While we simply removed
“high” motion subjects from the analysis, denoising the single-
subject fMRI data using ICA (Salimi-Khorshidi et al., 2014) or
using other approaches such as data scrubbing and regression of
nuisance timecourses out of the data (Power et al., 2012; Siegel
et al., 2014) prior to the dual regression or during dual regression
(e.g., by including a subject’s motion timecourses with stage 1
timecourses) may be desirable to remove motion effects and
thus retain subjects. While these approaches have been shown
to effectively remove motion, ICA-based denoising profoundly

improves the reproducibility of group-level RSN spatial maps
relative to either scrubbing or nuisance regression (Pruim et al.,
2015). This is because the latter two approaches may also affect
signals of interest, resulting in no improvement in reproducibility
of group-level RSN spatial maps over doing no additional motion
denoising, even though both techniques do effectively remove
motion effects. Moreover, the fact that motion effects can mimic
amplitude effects may be the fundamental reason that functional
connectivity analyses are so sensitive to motion effects.
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