106 research outputs found

    The Respect for Freedom of Expression and the Exercise of State Jurisdiction Online in International Human Rights Law

    Get PDF
    This thesis focuses on the exercise of State jurisdiction online and the fulfilment of freedom of expression in the cyberspace. In particular, the thesis aims to answer the following research questions: when and under what conditions can online acts be considered to have happened within a State’s jurisdiction according to human rights law? Is the extraterritorial exercise of State jurisdiction to regulate online content compliant with the freedom of expression provisions contained in human rights law? These questions are investigated through the analysis of key domestic Internet-related cases where States have exercised jurisdiction over cross-border online content extraterritorially. This analysis highlights the negative implications of these extraterritorial exercises of State jurisdiction on freedom of expression online. On the other hand, the thesis investigates the meaning of State jurisdiction online according to the European Convention of Human Rights, the American Convention of Human Rights, the African Charter on Human and Peoples’ Rights and the International Covenant on Civil and Political Rights. The aim of this analysis is to understand how the jurisdictional models developed by the human rights courts work in an online environment. The analysis highlights the difficulties presented by the application of the spatial and personal models of jurisdiction to online acts and investigates the extraterritorial effects model, which might be better suited to deal with online acts. Finally, the thesis explores whether the extraterritorial exercises of State jurisdiction examined in the first part of the thesis are compliant with the accessibility and foreseeability requirements of the ‘prescribed by law’ criterion of the human rights conventions. The analysis of this point concludes that, although the domestic laws authorising these exercises of jurisdiction are compliant with these requirements, their interpretation by the Courts should evolve to take into account the special, borderless nature of online content

    Prevalence of hepatitis B antiviral drug resistance variants in North American patients with chronic hepatitis B not receiving antiviral treatment

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138913/1/jvh12732.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138913/2/jvh12732_am.pd

    HBV quasispecies composition in Lamivudine-failed chronic hepatitis B patients and its influence on virological response to Tenofovir-based rescue therapy

    Get PDF
    The present study sought to evaluate the structure of HBV quasispecies in Lamivudine (LMV)-failed chronic hepatitis B (CHB) patients and its impact in defining the subsequent virological responses to Tenofovir (TDF)-based rescue-therapy. By analyzing HBV clones encompassing reverse transcriptase (RT) and surface (S) region from LMV-failed and treatment-naïve CHB patients, we identified 5 classical and 12 novel substitutions in HBV/RT and 9 substitutions in immune-epitopes of HBV/S that were significantly associated with LMV failure. In silico analysis showed spatial proximity of some of the newly-identified, mutated RT residues to the RT catalytic centre while most S-substitutions caused alteration in epitope hydrophobicity. TDF administration resulted in virological response in 60% of LMV-failed patients at 24-week but non-response in 40% of patients even after 48-weeks. Significantly high frequencies of 6 S-substitutions and one novel RT-substitution, rtH124N with 6.5-fold-reduced susceptibility to TDF in vitro, were noted at baseline in TDF non-responders than responders. Follow-up studies depicted greater evolutionary drift of HBV quasispecies and significant decline in frequencies of 3 RT and 6 S-substitutions in responder-subgroup after 24-week TDF-therapy while most variants persisted in non-responders. Thus, we identified the HBV-RT/S variants that could potentially predict unfavorable response to LMV/TDF-therapy and impede immune-mediated viral clearance

    Dynamics of Hepatitis B Virus Quasispecies in Association with Nucleos(t)ide Analogue Treatment Determined by Ultra-Deep Sequencing

    Get PDF
    [Background and Aims]: Although the advent of ultra-deep sequencing technology allows for the analysis of heretofore-undetectable minor viral mutants, a limited amount of information is currently available regarding the clinical implications of hepatitis B virus (HBV) genomic heterogeneity. [Methods]: To characterize the HBV genetic heterogeneity in association with anti-viral therapy, we performed ultra-deep sequencing of full-genome HBV in the liver and serum of 19 patients with chronic viral infection, including 14 therapy-naïve and 5 nucleos(t)ide analogue(NA)-treated cases. [Results]: Most genomic changes observed in viral variants were single base substitutions and were widely distributed throughout the HBV genome. Four of eight (50%) chronic therapy-naïve HBeAg-negative patients showed a relatively low prevalence of the G1896A pre-core (pre-C) mutant in the liver tissues, suggesting that other mutations were involved in their HBeAg seroconversion. Interestingly, liver tissues in 4 of 5 (80%) of the chronic NA-treated anti-HBe-positive cases had extremely low levels of the G1896A pre-C mutant (0.0%, 0.0%, 0.1%, and 1.1%), suggesting the high sensitivity of the G1896A pre-C mutant to NA. Moreover, various abundances of clones resistant to NA were common in both the liver and serum of treatment-naïve patients, and the proportion of M204VI mutants resistant to lamivudine and entecavir expanded in response to entecavir treatment in the serum of 35.7% (5/14) of patients, suggesting the putative risk of developing drug resistance to NA. [Conclusion]: Our findings illustrate the strong advantage of deep sequencing on viral genome as a tool for dissecting the pathophysiology of HBV infection

    Development of a Low Bias Method for Characterizing Viral Populations Using Next Generation Sequencing Technology

    Get PDF
    Background: With an estimated 38 million people worldwide currently infected with human immunodeficiency virus (HIV), and an additional 4.1 million people becoming infected each year, it is important to understand how this virus mutates and develops resistance in order to design successful therapies. Methodology/Principal Findings: We report a novel experimental method for amplifying full-length HIV genomes without the use of sequence-specific primers for high throughput DNA sequencing, followed by assembly of full length viral genome sequences from the resulting large dataset. Illumina was chosen for sequencing due to its ability to provide greater coverage of the HIV genome compared to prior methods, allowing for more comprehensive characterization of the heterogeneity present in the HIV samples analyzed. Our novel amplification method in combination with Illumina sequencing was used to analyze two HIV populations: a homogenous HIV population based on the canonical NL4-3 strain and a heterogeneous viral population obtained from a HIV patient's infected T cells. In addition, the resulting sequence was analyzed using a new computational approach to obtain a consensus sequence and several metrics of diversity. Significance: This study demonstrates how a lower bias amplification method in combination with next generation DNA sequencing provides in-depth, complete coverage of the HIV genome, enabling a stronger characterization of the quasispecies present in a clinically relevant HIV population as well as future study of how HIV mutates in response to a selective pressure

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing

    Evaluation of Intra-Host Variants of the Entire Hepatitis B Virus Genome

    Get PDF
    Genetic analysis of hepatitis B virus (HBV) frequently involves study of intra-host variants, identification of which is commonly achieved using short regions of the HBV genome. However, the use of short sequences significantly limits evaluation of genetic relatedness among HBV strains. Although analysis of HBV complete genomes using genetic cloning has been developed, its application is highly labor intensive and practiced only infrequently. We describe here a novel approach to whole genome (WG) HBV quasispecies analysis based on end-point, limiting-dilution real-time PCR (EPLD-PCR) for amplification of single HBV genome variants, and their subsequent sequencing. EPLD-PCR was used to analyze WG quasispecies from serum samples of patients (n = 38) infected with HBV genotypes A, B, C, D, E and G. Phylogenetic analysis of the EPLD-isolated HBV-WG quasispecies showed the presence of mixed genotypes, recombinant variants and sub-populations of the virus. A critical observation was that HBV-WG consensus sequences obtained by direct sequencing of PCR fragments without EPLD are genetically close, but not always identical to the major HBV variants in the intra-host population, thus indicating that consensus sequences should be judiciously used in genetic analysis. Sequence-based studies of HBV WG quasispecies should afford a more accurate assessment of HBV evolution in various clinical and epidemiological settings

    Applications of Next-Generation Sequencing Technologies to Diagnostic Virology

    Get PDF
    Novel DNA sequencing techniques, referred to as “next-generation” sequencing (NGS), provide high speed and throughput that can produce an enormous volume of sequences with many possible applications in research and diagnostic settings. In this article, we provide an overview of the many applications of NGS in diagnostic virology. NGS techniques have been used for high-throughput whole viral genome sequencing, such as sequencing of new influenza viruses, for detection of viral genome variability and evolution within the host, such as investigation of human immunodeficiency virus and human hepatitis C virus quasispecies, and monitoring of low-abundance antiviral drug-resistance mutations. NGS techniques have been applied to metagenomics-based strategies for the detection of unexpected disease-associated viruses and for the discovery of novel human viruses, including cancer-related viruses. Finally, the human virome in healthy and disease conditions has been described by NGS-based metagenomics

    Within-Host Dynamics of the Hepatitis C Virus Quasispecies Population in HIV-1/HCV Coinfected Patients

    Get PDF
    HIV/HCV coinfected individuals under highly active antiretroviral therapy (HAART) represent an interesting model for the investigation of the role played by the immune system in driving the evolution of the HCV quasispecies. We prospectively studied the intra-host evolution of the HCV heterogeneity in 8 coinfected subjects, selected from a cohort of 32 patients initiating HAART: 5 immunological responders (group A) and 3 immunological non-responders (group B), and in two HCV singly infected controls not assuming drugs (group C). For all these subjects at least two serial samples obtained at the first observation (before HAART) and more than 1 year later, underwent clonal sequence analysis of partial E1/E2 sequences, encompassing the whole HVR1. Evolutionary rates, dated phylogenies and population dynamics were co-estimated by using a Bayesian Markov Chain Monte Carlo approach, and site specific selection pressures were estimated by maximum likelihood-based methods. The intra-host evolutionary rates of HCV quasispecies was 10 times higher in subjects treated with HAART than in controls without immunodeficiency (1.9 and 2.3×10−3 sub/site/month in group A and B and 0.29×10−3 sub/site/month in group C individuals). The within-host Bayesian Skyline plot analysis showed an exponential growth of the quasispecies populations in immunological responders, coinciding with a peak in CD4 cell counts. On the contrary, quasispecies population remained constant in group B and in group C controls. A significant positive selection pressure was detected in a half of the patients under HAART and in none of the group C controls. Several sites under significant positive selection were described, mainly included in the HVR1. Our data indicate that different forces, in addition to the selection pressure, drive an exceptionally fast evolution of HCV during HAART immune restoration. We hypothesize that an important role is played by the enlargement of the viral replicative space
    corecore