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HBV quasispecies composition in 
Lamivudine-failed chronic hepatitis 
B patients and its influence on 
virological response to Tenofovir-
based rescue therapy
Priyanka Banerjee1, Abhijit Chakraborty2, Rajiv Kumar Mondal1, Mousumi Khatun1, 
Somenath Datta1, Kausik Das3, Pratap Pandit1, Souvik Mukherjee4, Soma Banerjee1, 
Saurabh Ghosh5, Saikat Chakrabarti2, Abhijit Chowdhury3 & Simanti Datta1

The present study sought to evaluate the structure of HBV quasispecies in Lamivudine (LMV)-failed 
chronic hepatitis B (CHB) patients and its impact in defining the subsequent virological responses to 
Tenofovir (TDF)-based rescue-therapy. By analyzing HBV clones encompassing reverse transcriptase 
(RT) and surface (S) region from LMV-failed and treatment-naïve CHB patients, we identified 5 classical 
and 12 novel substitutions in HBV/RT and 9 substitutions in immune-epitopes of HBV/S that were 
significantly associated with LMV failure. In silico analysis showed spatial proximity of some of the 
newly-identified, mutated RT residues to the RT catalytic centre while most S-substitutions caused 
alteration in epitope hydrophobicity. TDF administration resulted in virological response in 60% of 
LMV-failed patients at 24-week but non-response in 40% of patients even after 48-weeks. Significantly 
high frequencies of 6 S-substitutions and one novel RT-substitution, rtH124N with 6.5-fold-reduced 
susceptibility to TDF in vitro, were noted at baseline in TDF non-responders than responders. Follow-up 
studies depicted greater evolutionary drift of HBV quasispecies and significant decline in frequencies 
of 3 RT and 6 S-substitutions in responder-subgroup after 24-week TDF-therapy while most variants 
persisted in non-responders. Thus, we identified the HBV-RT/S variants that could potentially predict 
unfavorable response to LMV/TDF-therapy and impede immune-mediated viral clearance.

The advent of oral nucleoside/nucleotide analogs (NA) had ushered in a paradigm shift in the treatment of 
chronic hepatitis B (CHB) and currently represents the mainstay of HBV therapy. The NAs inhibit HBV rep-
lication by targeting the viral polymerase (Pol) that catalyzes the reverse transcription of a pre-genomic RNA 
intermediate to form mature, partially double-stranded, relaxed circular DNA genome of HBV1. However, com-
plete eradication of HBV is not possible with the currently available NAs because of the intrinsic stability of the 
nuclear form of viral genome, the covalently closed circular (ccc) DNA and this necessitates the treatment to be 
continued for a long-term, if not indefinitely, which in turn is often associated with the development of antiviral 
resistance1. This risk is particularly high for NAs with low barriers to resistance and with overlapping resistance 
profiles. Antiviral resistance stems from the remarkable genetic variation of the virus that is inherently generated 
by low-fidelity HBV Pol during reverse transcription, leading to simultaneous presence of different but closely 
related viral variants (commonly defined as quasispecies) within the infected host and the subsequent selection 
of viral mutants, having a replication advantage in the setting of drug therapy1. Moreover, it is increasingly recog-
nized that host immune responses are also relevant in the context of treatment induced clearance of chronic viral 
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infection2. At present three nucleoside analogues [lamivudine (LMV), telbivudine and entecavir (ETV)] and two 
nucleotide analogues [adefovir (ADV) and tenofovir disoproxil fumarate (TDF)] have been approved for treat-
ment of CHB, with LMV being the first agent made available1,3. However, LMV resistance develops in 53–76% 
of patients after 3 years of treatment4. Currently, ETV and TDF are recommended as first line therapies by major 
international guidelines5, but these relatively costly therapies are difficult to implement in countries having low or 
lower-middle income economies, such as India. Therefore, the less costly LMV, despite having low genetic barrier 
to resistance, is still extensively used resulting in a high risk of virological breakthrough and drug resistance and 
the management of the LMV resistant patients poses a growing problem for medical fraternity. Primary LMV 
resistance mutation has been mapped in the reverse transcriptase (RT) domain of HBV Pol and typically involved 
rtM204I/V, while compensatory mutations rtL180M, rtV173L, and rtL80I are often co-selected during therapy to 
restore HBV replication efficacy1. However, substitutions outside these well-defined RT positions had also been 
reported to be associated with LMV resistance6,7. Further, the Pol gene completely overlaps in a frame-shifted 
manner with the surface or envelope genes (preS1, preS2 and S) of HBV that contains both B- and T-cell antigenic 
epitopes, with the result that some drug-resistance mutations in Pol can directly impact the nature, function or 
antigenic properties of Hepatitis B surface antigen (HBsAg) that may have important immunological and clinical 
implications1. Different rescue therapies had been suggested for LMV resistance and typically involve switching 
to or increasingly, the addition of another antiviral agent such as ADV, ETV or TDF to the regimen3,5. Of these, 
TDF demonstrated a strong and lasting antiviral effect against wild-type HBV and has also been effective against 
LMV-resistant virus, thereby making it an attractive candidate for treatment of CHB patients who have failed 
LMV therapy8. It has been demonstrated that genetic heterogeneity of the virus at the level of quasispecies popu-
lation represents an important determinant of viral persistence and response to therapy9. Hence, in this study we 
investigated the composition of HBV quasispecies in LMV-failed Indian patients and addressed the question of 
whether the extent of genetic variation of HBV bears any relationship to the response to TDF-based rescue ther-
apy. We also studied the molecular evolution of the HBV quasispecies during the course of TDF-add on therapy 
by tracking individual viral variants in patients who exhibited different patterns of response to determine whether 
the viral quasispecies provides biological clues for understanding and predicting the outcome of rescue therapy 
in these patients.

Results
Distribution of HBV genotypes and demographic and clinical profiles of patients. A total of 37 
CHB patients were enrolled in the study among which 18 had a history of failed LMV therapy [with a median 
duration of drug exposure being 34 months (range 27–42 months)] while 19 CHB did not receive any NA before 
their recruitment. The direct sequencing and phylogenetic analysis of S region of HBV derived from 18 LMV-
failed patients revealed that 16 patients (88.9%) were infected with the HBV of genotype D (HBV/D), 1 patient 
(5.6%) carried HBV of genotype A (HBV/A) and 1 patient (5.6%) had HBV belonging to genotype C (HBV/C) 
(Supplementary Fig. S1A). Among the 19 treatment naïve CHB patients, 14 patients (73.7%) harbored HBV/D, 
3 patients (15.8%) carried HBV/A and 2 (10.5%) were infected with HBV/C (Supplementary Fig. S1B). All sub-
sequent analyses were done exclusively in patients carrying HBV of genotype D as they were the most represent-
ative group and included 16 LMV-failed and 14 treatment-naïve patients. The baseline clinical and demographic 
profiles of the two groups of patients with HBV/D showed no significant difference in viral/biochemical/clinical 
parameters at point of their enrollment in the study (Supplementary Table S1).

Analysis of RT domain of HBV Pol in the LMV-failed and treatment-naïve CHB patients. Direct 
sequencing of the PCR amplified RT domain of HBV/D from 16 LMV-failed patients demonstrated the presence 
of well-known LMV resistance mutations, rtM204V/I, rtL180M, rtS202G, rtL80I and rtA181T, either singly or 
in combinations. Notably, rtM204V/I were found in 12 out of 16 (75%) LMV-failed patients, of which 9 (75%) 
had rtM204V in association with rtL180M while the other 3 (25%) patients had rtM204I together with rtL80I 
mutation. In the remaining 4 (25%) patients, the multi-drug resistant mutation rtA181T was identified. Out of the 
9 patients whose HBV harbored rtM204V mutation, four patients also had rtS202G in their HBV DNA. None of 
the above-mentioned LMV resistant mutations were detected in HBV from treatment-naïve patients.

Further, to gain an insight into the composition of HBV quasispecies in patients who were non-responsive to 
LMV therapy, we adapted a cloning-sequencing approach whereby sequences of RT/S region of 10 HBV clones 
from each of 16 HBV/D infected patients were analyzed and compared with analogous sequences of similar 
number of clones from each of 14 HBV/D infected NA-naïve patients. For those LMV- failed patients whose 
HBV carried either rtM204V +  rtL180M or rtM204I +  rtL80I substitutions, these viral variants were found to 
comprise 20–100% or 50–100% respectively of said viral quasispecies pool. The rtA181T variant was detected in 
10–40% of the HBV clones from four LMV-failed patients while the clonal prevalence of rtS202G ranged from 
20–100%. Interestingly, the clonal analysis indicated that a total of 19 amino acid (aa) substitutions were present 
in significantly higher frequencies at the nominal level of 0.05 in the LMV-failed CHB patients as compared to 
untreated group (Table 1). These include five classical LMV-resistant mutations, rtM204V, rtM204I, rtL180M, 
rtS202G and rtL80I and 14 novel substitutions namely, rtN53D, rtY54H, rtL91I, rtI121L, rtF/H122L, rtH124N, 
rtQ130P, rtN131D, rtA219S, rtH248N, rtS256C, rtR266I, rtH/L267Q and rtV278I. However, in order to account 
for multiple comparisons, the Benjamini-Hochberg adjustment was applied to significance calculation follow-
ing which, the difference in frequencies of 17 out of 19 rt variants (with the exception of rt54H and rt256C) 
remained statistically significant between the two groups (Table 1). Remarkably, HBV clones having the muta-
tional combination of rtM204V +  rtL180M always carried the novel substitution rtH/L267Q while those with 
rtM204I +  rtL80I co-existed with rtR266I. Since the significant difference in the frequency of mutations in HBV 
clones from the two groups of patients could be attributed to a few individuals carrying a specific mutation in 
majority of its clones, we also investigated whether the proportion of individuals harboring a specific mutation in 
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any of its HBV clones is significantly different in the two groups. Out of the 17 aa substitutions where significant 
differences were observed in frequencies between HBV clones, 10 substitutions (rtN53D, rtI121L, rtF/H122L, 
rtH124N, rtQ130P, rtN131D, rtL180M, rtM204V, rtM204I and rtV278I) exhibited significant differences in the 
proportion of individuals having HBV clones carrying the corresponding mutation.

Mapping of LMV associated mutations in HBV RT domains and co-occurrence of muta-
tions. We next analyzed the distribution of LMV-related aa substitutions identified by clonal analysis in seven 
functional domains (A–G) and six interdomains of HBV RT. Six (rtL80I, rtL91I, rtL180M, rtS202G, rtM204V/I, 
rtH248N) (35.3%) out of 17 substitutions were located within different RT domains while 11 substitutions 
(64.7%) were mapped in inter-domains. The maximum number of aa substitutions (5 out of 11; 45.5%) were 
detected in the A–B inter-domain of RT, which overlaps with the “a”-determinant region of HBV surface protein 
(aa s124–147). While two-dimensional (2D) mapping indicates region specific clustering of frequently mutated 
residues (Fig. 1A), mapping of the same on the three-dimensional (3D) model of HBV RT domain generated in 
the study (Fig. 1B), showed the spatial proximity of certain sites despite their sequential distances. Several sub-
stitutions occurring at sites rtL80 and rtL91 (color: blue), rtL180 (yellow), rtS202 and rtM204 (orange), rtH248 
and rtS256 (purple), rtR266 and rtH267 (grey) were found to be reasonably close to the active center of the RT 
domain. However, few mutation sites, such as rtN53 and rtY54 (red), rtI121, rt122, rtH124, rtQ130 and rtN131 
(green), rtA219 (cyan) and rtV278 (grey) were relatively distant with respect to the active site residues. Mutations 
at sites proximal to the active center could directly modulate the architecture of the substrate and/or substrate 
analogous inhibitor/drug binding pocket whereas distal mutations could impact the binding via allosteric modu-
lations. However, at this stage, the suggestion of distal modulation is speculative and needs to be testified via rig-
orous molecular dynamics and/or relevant biophysical studies. Interestingly, several point mutations were found 
to be co-occurring with mutation at another site indicating a correlated mutational behavior of the HBV strains 
in order to attain drug resistance. The most frequently observed co-mutations in the current study are listed in 
Supplementary Table S2 whereas Fig. 1C presents a network of such co-varying positions along with their occur-
rence frequency and proximity to the active center. It is interesting to notice that active center closest site rtH248 
was co-mutating most frequently with an apparent distal position, rtV278. Similarly, a group of distal mutation 
sites rtF122, rtH124 and rtQ130 (green) were not only co-varying together but also were correlated to mutations 
occurring at rtH248 and rtV278. These co-mutational patterns between proximal and distal sites further suggest 
the existence of long-range structural and functional modulation of HBV RT domain with respect to mutations.

Analysis of the small S gene in the HBV quasi species pool isolated from the LMV failed 
CHB. Owing to the overlap of RT region of HBV Pol with the S gene coding for HBsAg, we also investigated 
the HBsAg mutations that were selected during long-term LMV therapy and correlated with treatment failure. 
HBsAg, having a complex trans-membrane topology, represents a key target of host antiviral immune responses 
and contains recognition sites (epitopes) for B cells as well as cytotoxic T (Tc), helper T (Th) cells. The clonal 

Amino acid substitutions 
in HBV/RT

Frequency (%) in HBV clonal 
population in LMV-failed 
CHB patients (total no of 

clones = 160)

Frequency (%) in HBV clonal 
population in treatment 

naïve-CHB patients (total no of 
clones = 140)

p-value 
(unadjusted)

Benjamini- 
Hochberg threshold

rtM204V

Known LMV- 
resistant 

mutations

26.3 0 2.05E-13* 0.000363

rtM204I 15.6 0 1.12E-07* 0.001962

rtS202G 17.5 0 1.12E-08* 0.00116

rtL80I 15.6 0 1.12E-07* 0.001962

rtL180M 26.3 0 2.05E-13* 0.000363

rtN53D

Novel 
amino acid 

substitutions

39.4 20 3.00E-04* 0.002326

rtY54H 43.1 27.1 5.30E-03 0.002616

rtL91I 8.8 0 1.00E-04* 0.00218

rtI121L 24.4 0 2.19E-12* 0.000436

rtF/H122L 42.5 14.3 6.56E-08* 0.001599

rtH124N 48.8 12.9 1.88E-11* 0.000727

rtQ130P 41.9 11.4 2.86E-09* 0.001017

rtN131D 50.6 15.7 1.27E-10* 0.000872

rtA219S 94.4 82.1 9.00E-04* 0.002471

rtH248N 78.8 56.4 4.00E-05* 0.002035

rtS256C 89.4 80.7 4.88E-2 0.002762

rtR266I 90.6 64.3 4.39E-08* 0.001453

rtH/L267Q 92.5 67.1 2.48E-08* 0.001308

rtV278I 50 12.9 4.06E-12* 0.000581

Table 1.  Frequency of amino acid substitutions in HBV/RT in the viral quasi species pool from LMV-
failed (n = 16) and treatment-naïve (n = 14) CHB patients. *Significant after Benjamini-Hochberg correction; 
HBV/rt variants with significantly different frequency distribution after Benjamini-Hochberg correction are 
shown in bold.
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analysis uncovered 20 amino acid substitutions in ORF-S that showed nominally significant difference in frequen-
cies between LMV-failed and untreated patients. However, out of these 20 S-substitutions, 10 (sT114S, sT126I, 
sP127T, sN131T, sN143S, sY/S161F, sA194V, sI195M, sW196L and sR210N) remained significant after applica-
tion of Benjamini-Hochberg correction (Table 2). Among these, sT114S, sA194V and sW196L corresponded 
to rtF/H122L, rtS202G and rtM204V respectively. Notably, 9 out of the 10 substitutions resided in the known 
B- and T-cell epitopes of HBsAg that included 4 substitutions (sT126I, sP127T, sN131T and sN143S) within the 

Figure 1. Mutational mapping of HBV RT domain. Panel A maps the observed point mutations onto the 
two-dimensional (2D) domain architecture whereas Panel B shows the mapping of the same mutations onto 
the 3D model of HBV RT domain. Same color code is maintained for the mutation cluster depicted in panel A 
and B, respectively. Bound substrates (TTP and DNA) are shown in stick model (cyan and blue, respectively). 
Panel C provides the network of most frequently co-varying mutation pair sites within the HBV strains where 
two co-mutating sites are connected via edges. Edge width depicts the frequency of each mutation pair whereas 
the color of the edge represents the inter-residue distance of the co-varying positions. Node size is inversely 
proportional to their distance from the active center. Node color is maintained as Panel A and B.
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“a”-determinant region (aa s124–147), the primary target for neutralizing antibody produced by B cells during 
natural infection or following active or passive immunization10.

Hydrophobicity plot. We examined the impact of the amino acid substitutions within the B-cell epitopes 
(aa s115–155 and s160–207) of HBAg on the hydrophobicity profile of the specific epitope regions by the Kyte–
Doolittle method11. Most of the substitutions in B-cell epitopes resulted in variations in epitope hydrophobicities 
relative to wild-type residues (Fig. 2A,B), with the exception of sP127T, where no difference was noted. A similar 
change in hydrophobicity profiles due to these substitutions in the overlapping T-cell epitopes was noticed. Thus 
it seems plausible that these mutated B- and T- cell epitopes of HBsAg could contribute to viral immune escape 
and establishment of HBV persistence in LMV-failed patients.

Therapeutic regimen and clinical course of the LMV-Failed CHB patients. In this study, all 16 
HBV/D infected, LMV-failed patients were treated by adding TDF (300 mg/day) in their LMV-based regime and 
followed for one year. However, 6 patients were excluded due to poor compliance to therapy. Of the 10 patients 
who completed 48 week follow-up, 6 patients exhibited greater than 1 Log10 copies/ml reduction in HBV-DNA 
after 24 weeks of therapy and hence considered to be responders to TDF add-on therapy (Supplementary Fig. S2). 
Continuation of therapy thereafter resulted in a further yet small reduction in viral load of 0.7 Log10 at 1 year in 
these patients although none could achieve undetectable HBV-DNA. However, in the remaining 4 patients, the 
addition of TDF did not result in any significant change in viral load and transaminase values between initiation 
of TDF therapy and at 24 or 48 weeks and hence considered as non-responders.

Baseline Clinical and demographic profiles of the LMV experienced CHB patients with differen-
tial response to add-on TDF therapy. The clinical and virological profiles of all 10 LMV-failed patients 
who completed 48-week TDF therapy were assessed at baseline and no significant differences were seen in age, 
sex and serum ALT levels between the responders (n =  6) and non-responders (n =  4). However, the responders 
exhibited higher mean HBV-DNA level of 6.526 ±  0.4680 log10 copies/ml than that of the non-responders with 
3.818 ±  0.3460 Log10 copies/ml (Supplementary Table S3). The percentage of patients with HBeAg negative status 
was higher in nonresponders (2 out of 4 patients, 50%) than that in the responders (2 out of 6 patients, 33.33%).

Amino acid 
substitutions 
in HBV/S

Location in 
Non-epitope/

Epitope region)

Frequency (%) in HBV clonal 
population in LMV-failed 
CHB patients (total no of 

clones = 160)

Frequency (%) in HBV clonal 
population in treatment-naïve 

CHB patients (total no of 
clones = 140)

p-value 
(unadjusted)

Benjamini- 
Hochberg 
threshold

sN3S non-epitope 22.5 12.1 2.26E-02 0.004535

sI4T non-epitope 23.8 12.1 1.09E-02 0.003319

sS45A B-, Th-, Tc-cell 
epitope 26.9 14.3 1.02E-02 0.003097

sV47T B-, Th-, Tc-cell 
epitope 20 8.6 5.40E-03 0.002876

sL49P B-, Th-, Tc-cell 
epitope 23.1 12.1 1.58E-02 0.004093

sS53L non-epitope 23.1 12.1 1.58E-02 0.004093

sA/S113T non-epitope 22.5 12.1 2.26E-02 0.004535

sT114S non-epitope 85.6 69.3 7.68E-04* 0.002323

sT118V B-cell epitope 30.6 17.9 1.10E-02 0.00354

sT126I B-, Th-cell 
epitope 19.4 5.0 1.90E-04* 0.00177

sP127T B-, Th-cell 
epitope 61.3 34.3 3.45E-06* 0.001106

sA128V B-, Th- cell 
epitope 32.5 17.9 5.21E-03 0.002655

sN131T B-, Th- cell 
epitope 90.6 69.3 3.68E-06* 0.001327

sN143S B-, Th- cell 
epitope 85.6 69.3 7.68E-04* 0.002323

sK160R B-cell epitope 25.6 12.1 3.36E-03 0.002434

sY/S161F B-cell epitope 87.5 62.9 7.34E-07* 0.000664

sA194V B-, Tc- cell 
epitope 85 62.1 9.64E-06* 0.001549

sI195M B-cell epitope 25 0 9.98E-13* 0.000221

sW196L B-cell epitope 14.4 0 2.46E-07* 0.000442

sR210N Tc epitope 25 5.7 3.19E-06* 0.000885

Table 2.  Frequency of amino acid substitutions in HBV/S in the viral quasi species pool from LMV-failed 
(n = 16) and treatment-naïve (n = 14) CHB patients. Abbreviation- Tc, cytotoxic T cell epitope; Th, helper 
T cell epitope. *Significant after Benjamini-Hochberg correction; HBV/S variants with significantly different 
frequency distribution after Benjamini-Hochberg correction are shown in bold.
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HBV RT/S quasi species heterogeneity at Baseline in LMV resistant patients with different ther-
apeutic responses to TDF. To ascertain whether the response to TDF add-on therapy correlates with the 
extent of baseline genetic heterogeneity of HBV/D isolates among LMV resistant patients, we assessed the genetic 
diversity and complexity of HBV quasispecies in the responders and non-responders. At baseline, the quasipecies 
complexity at the amino acid level was found to be significantly low in TDF-responders than non-responders 
(0.7500 vs 0.9300, p <  0.05), although the viral complexity at nucleotide level, the mean genetic distance (d), the 
number of synonymous substitutions per synonymous site (dS), and the number of non-synonymous substitu-
tions per non-synonymous site (dN) did not differ statistically between the two groups (Supplementary Table S4).

We separately screened the RT and S regions of viral population in LMV-failed patients to identify specific 
amino acid differences that might discriminate TDF-responders from non-responders. The clonal analysis 
showed that there was no significant difference at baseline in the frequencies of classical LMV-resistant mutations, 
rtL80I, rtL180M, rtS202G and rtM204V/I in both groups of patients. However, the frequencies of 12 novel amino 
acid substitutions in RT and 8 substitutions in HBV-S region were found to be significantly different at a nominal 
level of 0.05 between TDF responders and non-responders at baseline (prior to the initiation of TDF-based res-
cue therapy) (Table 3). Among these, only one RT-variant, rtH124N and 6 S-variants sS45A, sA/S113T, sT118V, 
sT125M, sA128V and sR210N remained significant following Benjamini Hochberg adjustment (Table 3), imply-
ing that the presence of these variants were associated with non-response to TDF. Except for A/S113T, all the 
other 5 S-substitutions were localized in B- or T-cell epitope regions.

Susceptibility of rtH124N mutant and wild-type HBV to Tenofovir in vitro. To determine whether 
rtH124N mutation impact the viral susceptibility to tenofovir, we engineered rtH124N into wild-type (WT) lab-
oratory strain of HBV belonging to genotype D and tested the abilities of WT and rtH124N mutant HBV to 
replicate in Huh7 human hepatoma cells in the presence of increasing concentrations of tenofovir by quantifying 
intracellular HBV DNA levels by real time PCR. For WT, 6.7 ±  0.4 μ M tenofovir reduced the replicative level to 

Figure 2. Hydrophobicity plots of B-cell epitope regions- (A) aa s115–155 and (B) aa s160–207 of HBV/S 
showing altered hydrophobicity due to substitutions at specific positions, obtained by the Kyte and Doolittle 
method using PROTSCALE program in EXPASY. Values were normalized between 0 and 1, and a sliding 
window of five amino acids with a step size of 1 was applied.
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50% while the presence of rtH124N increased the IC50 to 44.0 ±  3.2 μ M, that corresponded to a 6.5 fold decreased 
susceptibility to tenofovir (Supplementary Fig. S3).

Examination of clonal evolution of HBV during the course of TDF add-on therapy. We investi-
gated the pattern of quasispecies evolution at 24 and 48 week following the initiation of TDF-therapy by char-
acterization of viral population on serial samples from six responders and four non-responders. While the 
responder group displayed a dramatic reduction in viral complexity and diversity including, Shannon entropy 
at nucleotide and amino acid level, d at nucleotide and amino acid level, dS and dN with respect to baseline fol-
lowing 24 and 48 weeks of TDF therapy, the non-responders were typified by less pronounced alteration of viral 
quasispecies during the same period, suggesting that preexisting variants were mostly maintained with possible 
changes in their proportion (Supplementary Table S5). We further appraised the changes in individual amino acid 
residues after 24 and 48 week TDF add-on therapy that might impact the therapeutic response. Interestingly, there 
was no statistically significant difference with respect to baseline in the proportions of LMV-associated muta-
tions, rtM204V, rtL180M and rtS202G in both TDF responders and non-responders even after 48 week-therapy. 
However, at the end of 24-week of TDF therapy, decline in the frequencies of rtM204I, rtL80I, rtN53D, rtY54H, 
rtH124N, rtN131D and rtH248N together with sS45A, sP46T, sI68T/A, sA/S113T, sT118V, sT125M, sW196L and 
sR210N from basal values were noted exclusively in the TDF-responder group at the nominal 0.05 significance 
level (Table 4). After implementing Benjamini-Hochberg correction, 3 (rtM204I, rtL80I, rtY54H) out these 7 RT 
substitutions and 6 (sS45A, sP46T, sI68T/A, sT118V, sW196L and sR210N) out of 8 S-substitutions remained sig-
nificantly less frequent in the responders (Table 4). At 48 week of TDF therapy, the frequencies of rtM204I, rtL80I, 
sS45A, sT118V, sW196L and sA128V continued to be significantly reduced from baseline in responders, although 
an increase in frequency of the substitution rtV278I was noted in the HBV clones of the responders during this 
observational period (Table 5). In contrast, there were no significant change in percentages of RT and S variants 
from the baseline values in the non-responders after 24 and 48-week TDF therapy following Bejamini-Hochberg 
adjustment, although the frequencies of rtM204I and rtL80I were found to be nominally significantly lower than 
baseline frequency post 24 week and 48 week therapy (Tables 4 and 5).

Discussion
The burden of historical and continued LMV use in India is very large and its widespread use favors the selec-
tion of HBV variants that not only confer resistance to this drug and exacerbations of liver disease but could 
potentially affect the success of rescue therapy with another anti-HBV agent. Analysis of the viral population has 
become increasingly important in the clinical management of HBV patients, both in the initial design of a thera-
peutic plan and in selecting a salvage regimen. In the present study, we first investigated the composition of HBV 

Amino acid 
substitutions

Baseline frequency (%) in HBV 
clones from six TDF responders 

(total no of clones = 60)

Baseline frequency (%) in HBV clones 
from four TDF nonresponders (total 

no of clones = 40)
p-value 

(unadjusted)
Benjamini- 

Hochberg threshold

HBV/RT

rtN53D 27.5 51.7 1.30E-02 0.001163

rtY54H 60 25 5.00E-04 0.000436

rtL91I 6.7 20 4.62E-02 0.001744

rtT118N 83.3 100 4.40E-03 0.001017

rtI121L 3.3 25 1.60E-03 0.000727

rtF/H122L 25 47.5 1.76E-02 0.001526

rtH124N 25 72.5 4.03E-06* 0.000145

rtQ130P 25 47.5 1.76E-02 0.001526

rtS256C 76.7 100 4.00E-04 0.000291

rtR266I 80 100 1.30E-03 0.000581

rtH/L267Q 75 97.5 1.70E-03 0.000872

rtV278I 23.3 45 2.94E-02 0.001599

HBV/S

sS45A 21.7 75 1.45E-07* 0.001106

sP46T 53.4 75 2.31E-02 0.001880531

sI68T/A 53.4 75 2.31E-02 0.001880531

sA/S113T 10 75 4.05E-11* 0.000442

sT118V 21.7 90 6.69E-12* 0.000221

sT125M 11.7 75 1.07E-10* 0.000664

sA128V 31.7 82.5 5.85E-07* 0.001327

sR210N 16.7 75 5.79E-09* 0.000885

Table 3.  Baseline frequency of amino acid substitutions in RT and S regions of HBV quasispecies from 
LMV-failed CHB patients who responded differentially to add-on TDF therapy. *Significant after Benjamini-
Hochberg correction; variants with significantly different frequency distribution after Benjamini-Hochberg 
correction are shown in bold.
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quasispecies in NA-naive and LMV-failed CHB patients of Eastern India with matched genotype to get a snapshot 
of the variability of overlapping RT/S region of HBV arising due to extended LMV therapy. Our mutational analy-
sis focusing on the RT domain of HBV Pol revealed that 75% of our cohort of HBV/D infected patients, who were 
under LMV for a median duration of 34 months carried the classical rtM204V/I mutation, of which rtM204V was 
predominant. A previous study from North India reported the presence of rtM204V/I resistant mutants in 6% 
and 29% CHB patients receiving LMV for 12 and 18 months respectively12 while another study from South India 
detected M204V/I mutations in 27% of LMV-treated patients after a median treatment period of 13 months13.

The most widely used method of detecting drug-resistant HBV in majority of the studies involves PCR ampli-
fication and direct sequencing of the RT region and though informative, this method could detect only the highly 
abundant variants. Hence to achieve a more precise characterization of the ensemble of variants that compose 
the HBV population in the enrolled patients, we adapted a cloning-sequencing approach, whereby a panel of 
10 HBV/D-RT clones was generated such that each clone represented an independent variant within the qua-
sispecies. The analysis of HBV clones from LMV-failed and untreated CHB patients expanded the spectrum 
of LMV-associated mutations to include 12 novel RT substitutions in addition to the 5 well-known ones. Our 
3D homology model of RT showed a close proximity of some of frequently mutated sites, such as rtL80 and 
rtL91, rtH248, rtR266 and rtH267 to the active center of the RT domain demonstrating their possible roles in 
the binding of the nucleotides and inhibitors and in the development of resistance. Further, we noted that many 
RT positions co-mutate with more than one other position, suggesting that these correlated mutations are more 
likely to be associated with drug resistance than expected by chance. Among the non-classical RT substitutions 
detected in the study, rtL91I was earlier noted in HBV of genotype D, rtH124N and rtV278I were perceived in 
HBV of genotype G while rtN131D was encountered in HBV of genotype B derived from different CHB patients 
under LMV monotherapy in USA6. In two different studies, Ciancio et al.14 reported the association of rtC256 
and rt91L/I with failure of long-term response to LMV while Wong et al.15 suggested rt124N to be associated with 
suboptimal response to ETV.

A series of 10 S-gene substitutions within different immune epitopes were seen to emerge in the viral popu-
lation of patients failing LMV therapy. Of these, sI195M and sW196L had been shown to have reduced binding 
to anti-HBsAg antibodies16 while a decrease in the antigenicity of the S protein due to the presence of sP127T 
mutations had been documented17. It is widely recognized that the humoral immune responses to HBV surface 
proteins contributes to the clearance of circulating HBV particles, whereas cellular immune responses are respon-
sible for the elimination of infected hepatocytes18. Our analysis of epitope regions with and without the identified 
substitutions showed changes in their hydrophobicity profiles, suggesting that these substitutions may affect the 

Amino acid substitutions 
in HBV RT and S region

Baseline frequency 
(%) in HBV clones

Frequency (%) in HBV clones 
after 24 week TDF therapy

p-value 
(unadjusted)

Benjamini-
Hochberg threshold

TDF Responders (total no of HBV clones =  60)

HBV/RT

 rtL80I 25 0 2.25E-05* 0.000509

 rtM204I 25 0 2.25E-05* 0.000509

 rtN53D 27.5 11.7 3.90E-02 0.001017

 rtY54H 60 16.7 1.69E-06* 0.000145

 rtH124N 25 8.3 2.60E-02 0.000872

 rtN131D 45 16.7 1.40E-03 0.000581

 rtH248N 60 33.3 5.80E-03 0.000727

HBV/S

 sS45A 21.7 0 1.20E-04* 0.001217

 sP46T 53.3 16.7 4.40E-05* 0.000774

 sI68T/A 53.3 16.7 4.40E-05* 0.000774

 sA/S113T 10 0 2.74E-02 0.00177

 sT118V 21.7 0 1.20E-04* 0.001217

 sT125M 11.7 0 1.29E-02 0.001549

 sW196L 25 0 2.25E-05* 0.000221

 sR210N 16.7 0 1.29E-03* 0.001327

TDF Non Responders (total no of HBV clones =  40)

 HBV/RT

 rtL80I 25 0 1.03E-03 0.000363372

 rtM204I 25 0 1.03E-03 0.000363372

HBV/S

 sW196L 25 0 1.00E-03 0.000221239

Table 4.  Frequency of amino acid substitutions in RT and S regions of HBV quasispecies from LMV-failed 
CHB patients who responded differentially after 24 week TDF add-on therapy. *Significant after Benjamini-
Hochberg correction; variants with significantly different frequency distribution after Benjamini-Hochberg 
correction are shown in bold.
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recognition of viral immune targets by specific B- or T-cells. There is increasing evidence that the success of 
anti-viral therapy is conditioned by contribution of host immune system19 and it appears that extended LMV 
therapy also favored the selection of HBV with deep modification in S protein that could accentuate the ability of 
the variant virus to evade the host immunity and persist in hosts. Thus our study confirms that LMV-failed Indian 
patients carried a constellation of recognized and novel mutations in RT and in immune epitopes of S region of 
HBV/D that undermine the efficacy of LMV and pose a serious challenge for the management of these patients.

Clinical evidences suggest TDF monotherapy or TDF plus LMV combination therapy to be a favorable ther-
apeutic option in CHB patients infected with LMV-resistant HBV20. In a previous study, in HIV co-infected 
patients with LMV-resistant HBV infection, the use of TDF +  LMV combination therapy was found to be effec-
tive at reducing the HBV-DNA to undetectable level in 76% of the patients during a median treatment period of 
116 weeks8. An even better response rate to TDF +  LMV therapy in LMV-resistant patients was reported from a 
multi-centre study in Korea, where 92.6% of the LMV-resistant patients achieved < 20 IU/ml of HBV DNA load 
after ~3 months of combination therapy8. Another recent study depicted that 85.4% of Korean CHB patients with 
LMV and ETV resistance achieved virologic response (HBV DNA level < 20 IU/mL) following 24 months of TDF 
mono-rescue therapy21. The salvage potential of TDF was also evaluated in HBV genotype C infected Japanese 
patients who had failed treatment with other NAs. Serum HBV-DNA levels were found to be undetectable in 59% 
of subjects at week 24, and increased to 62% and 71% at weeks 48 and 96, respectively22. However, another study 
from Italy documented that in LMV-failed patients with a median treatment duration of 19 months, LMV +  TDF 
therapy resulted in HBV-DNA undetectibility (< 2,000 copies/ml) in 20% of patients at 24 months23. In the pres-
ent study, 60% of the LMV-failed patients who received TDF add-on therapy showed > 1 log reduction in viral 
load from their baseline at the end of 24 week although none achieved undetectable HBV-DNA even after 48 
week therapy. A possible explanation of the lower rate of virological response in our patients is their extensive 
prior exposure to LMV (median duration 34 months) that had induced the emergence of a highly heterogeneous 
quasispecies pool and the reduced sensitivity of some of the viral variants to TDF.

Amino acid substitutions 
in HBV RT and S region

Baseline frequency 
(%) in HBV clones

Frequency (%) in HBV clones 
after 48 week TDF therapy

p-value 
(unadjusted)

Benjamini-
Hochberg threshold

TDF Responders (total no of HBV clones =  60)

HBV/RT

 rtL80I 25 1.7 2.20E-04* 0.000363

 rtM204I 25 1.7 2.20E-04* 0.000363

 rtY54H 60 33.3 5.80E-03 0.000872

 rtN131D 45 18.3 2.90E-03 0.000581

 rtA219S 90 100 2.70E-02 0.001163

 rtH248N 60 33.3 5.80E-03 0.000727

 rtS256C 76.7 93.3 1.90E-02 0.001017

 rtV278I 23.3 56.7 3.50E-04* 0.000436

HBV/S

 sS45A 21.7 0 1.18E-04* 0.000774

 sP46T 53.3 25 2.59E-03 0.001659

 sI68T/A 53.3 25 2.59E-03 0.001659

 sA/S113T 10 0 2.74E-02 0.001991

 sT118V 21.7 0 1.18E-04* 0.000774

 sT125M 11.7 0 1.29E-02 0.00177

 sA128V 31.7 0 7.01E-07* 0.000221

 sW196L 25 1.7 2.15E-04* 0.000885

 sR210N 16.7 0 1.29E-03 0.001106

TDF Non Responders (total no of HBV clones =  40)

HBV/RT

 rtL80I 25 0 1.03E-03 0.000363

 rtM204I 25 0 1.03E-03 0.000363

 rtL91I 20 0 5.30E-03 0.000581

 rtI121L 25 0 1.03E-03 0.000436

 rtH248N 75 50 3.70E-02 0.000727

HBV/S

 sA128V 82.5 100 1.17E-02 0.000442478

 sW196L 25 0 1.00E-03 0.000221239

Table 5.  Frequency of amino acid substitutions in RT and S regions of HBV quasispecies from LMV-failed 
CHB patients who responded differentially after 48 week TDF add-on therapy. *Significant after Benjamini-
Hochberg correction; variants with significantly different frequency distribution after Benjamini-Hochberg 
correction are shown in bold.
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Different studies have sought to predict the efficacy of antiviral therapy based on viral quasispecies parameters 
(complexity and diversity) before or during antiviral therapy and often yielded conflicting results. Chen et al. and 
Liu et al. investigated the changes of HBV quasispecies in the RT region in CHB patients who received LMV or 
ETV treatment, respectively9,24. In both studies, HBV quasispecies variability at baseline was found to be compa-
rable in responders and non-/or partial responders but higher changes in complexity and diversity of HBV qua-
sispecies in the first 4 weeks of therapy correlated with a good antiviral efficacy. However, in another study, Wong 
et al. reported that a lower pre-treatment or baseline quasispecies complexity and diversity was associated with 
poor response to ETV15. Further, a more recent study showed that the evolution of HBV quasispecies was not sig-
nificantly different in patients with incomplete ADV response during TDF-based therapy, whether they were slow 
or rapid responders25. In LMV-failed patients subjected to TDF add-on therapy, we also conducted analysis of 
genetic parameters of HBV on a subset of TDF-responders and nonresponders using serum samples obtained at 
baseline and while on treatment. It was observed that a greater level of amino acid complexity in the RT/S region 
at baseline was significantly associated with a higher likelihood of nonresponse to TDF. Further, comparison of 
the genetic heterogeneity of the baseline samples versus the composite of follow-up samples revealed that the pat-
tern of quasispecies evolution differed significantly between responding and non-responding patients, whereby 
the responders experienced a striking reduction in genetic diversity leading to an increasingly homogeneous 
viral population while there was a lack of progressive shift in the viral population in nonresponders. Intriguingly, 
in-depth analysis of the baseline quasispecies pool showed that while both TDF responders and non-responders 
carried the well- known LMV resistance mutations in comparable proportions, there were significant differences 
in the basal frequencies of the one novel RT (rtH124N) and 6 S-substitutions (sS45A, sA/S113T, sT118V, sT125M, 
sA128V and sR210N) between the two groups. Thus, these substitutions could be considered as significant pre-
dictors of response to TDF-based rescue therapy for LMV-failed patients as the increasing presence of these vari-
ants could hinder the response to therapy as well as immune clearance of the virus. We assessed the susceptibility 
of rtH124N to tenofovir in transiently transfected Huh7 cells in vitro and noted that HBV harboring rt124N 
consistently demonstrated a 6.5-fold increase in the IC50 values as compared to WT-HBV. By definition, a 5- to 
10-fold increase in the IC50 correlates with partial resistance26 and hence our data clearly demonstrated partial 
resistance to tenofovir in the presence of rtH124N polymerase mutation and also strongly indicate the associa-
tion of rt124N with a slower response to TDF therapy. With respect to the substitutions in immune-epitopes of 
HBV/S, the immune response originally elicited by specific epitopes or their mutated forms need to be carefully 
dissected to understand the dynamics of viral escape from a co-evolving immune response during therapy.

Following TDF therapy, the frequencies of rtM204I and rtL80I were found to decrease in both responders 
and non-responders although there was little change in the prevalence of rtM204V and rtL180M. In vitro studies 
conducted separately by Lada et al.27 and Delaney et al.28 documented that HBV bearing the rtM204V +  rtL180M 
mutations displayed a 3.33 and 2.1-fold increase in the IC50 for TDF compared to wild-type virus in cell culture 
suggesting that TDF was less efficacious on these LMV-resistant mutants. Our results further extended these pre-
vious findings and raised doubts about the effectiveness of TDF on the heavily LMV experienced Indian patients, 
where rtM204V +  rtL180M mutation is widely prevalent. We noted that the baseline frequency of rtM204V 
(18.3%) substitution was less than that of rtM204I (25%) in the clonal population of the LMV-failed patients who 
responded to TDF therapy in contrast to the non-responders where rtM204V was dominant. Given that none of 
the TDF responders could achieve undetectable HBV DNA levels even after 1 year of therapy, it appears that the 
persistence of the novel RT variants in the quasispecies pool (such as, rtV278I) might cause a reduced sensitivity 
to TDF and could undermine the therapeutic benefit. Hence a longer duration and a higher dose of TDF therapy 
may be required for these patients to reach undetectable HBV-DNA levels. Additionally, HBV population in TDF 
responders showed a significant decline in the frequency of S-substitutions from baseline during the course of 
therapy, probably reflecting in at least partial restoration of immune responses in parallel with reduction of viral 
load. In contrast, the HBV-associated immune dysfunction continued to persist in TDF non-responders where 
there was little change in viral load and the number of S-substitutions before and after the add-on therapy. Clearly 
the role played by the immune response in the setting of anti-viral therapy is complex. While the drugs provide 
a constant selection pressure, the immune response is sensitive to changes in the antigenic structure of the virus 
population29 and also may shift between different viral epitopes30. A comprehensive evaluation of the immune 
response dynamics during the course of TDF therapy in CHB patients is needed to better understand the outcome 
of therapy.

Finally, through extensive characterization of viral quasispecies in LMV-failed patients and their evolution 
during add-on TDF therapy, we identified HBV sequence patterns in RT and S that have the potential to serve as 
predictors of long-term drug response to LMV and TDF. This knowledge could help in the development of novel 
strategies engaging immune-based and anti-viral selection synergistically against HBV. However the potential 
limitations of the present study lie in the small number of patients and analysis of only 10 clones per time point. 
Nonetheless our findings reiterated the importance of carrying out targeted surveillance of viral population of the 
patients before initiation of any therapy. The ability to distinguish between individuals who are likely to benefit 
from therapy from those who have little chance of long-term sustained response could significantly improve the 
utility and reduce the overall treatment costs and additional side effects of these anti-HBV treatment regimes.

Materials and Methods
Patients. This was a prospective study that recruited LMV-failed CHB patients from School of Digestive and 
Liver Diseases (SDLD), Institute of Post Graduate Medical Education and Research (I.P.G.M.E. & R.), Kolkata, 
India during 2010–2013. Adult patients who were under uninterrupted LMV monotherapy for minimum 24 
months but showed insufficient virological response to LMV, defined as a reduction in HBV-DNA of < 1 log 
copies/ml or a persistent viraemia (HBV-DNA levels > 104 copies/ml) and elevated alanine transaminase (ALT) 
(> 40 IU/ml) since the preceding 6 months or more of their visit to SDLD were considered for the study. Patients 
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were excluded if they had previously used any anti-HBV agent, other than LMV, or had coexisting HCV, HDV 
or HIV infection, decompensated liver disease or evidence of HCC. In addition, treatment-naïve CHB patients 
having viral load > 104 copies/ml, ALT >  40 IU/L and without any other viral infection were included as a com-
parison group.

Rescue therapy and follow-up after enrolment. Patients with LMV failure, who satisfied the inclusion 
and exclusion criteria were given TDF (300 mg) “add-on” LMV (100 mg) daily for at least one year and their clin-
ical and virological status were reviewed at 24 and 48 weeks.

Collection of blood samples. On the day of enrolment, 5 ml blood was collected from LMV-failed as well 
as treatment-naïve patients, the serum was separated and stored at − 80 °C refrigerator until use. Subsequently, 
blood samples were collected from LMV-failed patients at 24 week and 48 week following commencement of 
TDF add-on therapy. Compliance with treatment was assessed by interview during every visit. Written informed 
consents were obtained from all patients and the access to human samples and all experimental protocols were 
carried out in accordance with the approved guidelines of the Ethical Review Committee of I.P.G.M.E.&R.

Testing of liver enzymes. Each serum sample was tested for the levels of liver enzymes, ALT and aspartate 
aminotransferase (AST) using commercially available kits.

Serum HBV DNA Isolation and assessment of Viral Load. HBV DNA was extracted from 200 μ l 
serum samples using Blood Mini Kit (Qiagen Inc., CA, USA). At baseline and each follow-up point, the quan-
tification of HBV DNA was performed by Real-Time PCR using SYBR Green Master mix (Applied Biosystems 
[ABI], CA, USA) and primers F4 and R3 (Supplementary Table S6). The lower detection limit was 250 copies/ml.

PCR Amplification, Cloning and Sequencing of HBV RT/S region. The overlapping RT/S region of 
HBV was amplified either by single-step PCR using primers F4 and R9 or by nested-PCR using the primer-pairs 
F12-R10 in 1st round and F4-R9 in the 2nd round (Supplementary Table 1) depending on viral load. The PCR 
product was either sequenced directly using Big Dye cycle sequencing kit (ABI) on automated DNA sequencer 
or cloned into the pJET1.2/blunt vector (Thermo Fisher Scientific, MA, USA) and transformed into E. coli DH5α  
competent cells. At least 10 clones bearing the RT/S insert were randomly selected and sequenced from each 
sample.

Analysis of sequences. Sequence editing and analysis were executed using Seqscape V2.5 software. HBV/S 
sequences obtained in the study were further compared with representative sequences of ten HBV genotypes 
(A–J) available in the GenBank. Alignments were carried out using CLUSTALX software followed by the con-
struction of phylogenetic tree by neighbor-joining method using the Kimura 2 parameter model embedded in 
MEGA5 software package31. Sequence variability in RT/S region was analyzed with the help of multiple alignment 
data. The HBV nucleotide and amino acid complexity of the RT/S region was evaluated for each patient by calcu-
lating normalized entropy (Sn) as described previously9. The quasispecies diversity, including d, dS and dN were 
also determined for each patient with the Kimura two-parameter method in MEGA5 program9.

Homology model of HBV RT domain. The sequence of RT region of the wild-type HBV belonging to 
genotype D (Genbank accession no: GQ205378) was considered for three-dimensional (3D) model generation. 
Here, we used a previously reported32, manually curated HBV: HIV-1 RT domain alignment for the generation 
of the 3D-model. The properly curated sequence alignment matched a conserved lysine residue (K65) in HIV-1 
RT domain that is essential for the ionic interaction with the γ  phosphate of the incoming nucleotide and subse-
quent drug resistance33. In the final model generation, we had used HIV-1 RT domain (PDB code: 1RTD)34 as our 
guiding template crystal structure. Initially, a decoy set of 1000 models of HBV RT domain was generated using 
protein modeling program MODELLER35. The decoy set was then ranked based on MODELLER DOPE score and 
further top 100 models were evaluated using the PROCHECK program36 to select the HBV RT final model with 
the best stereo-chemical quality. The final model possessed 96.4% of HBV RT residues within the favored region 
of Ramachandran plot. CHIMERA structure visualization software37 was used to map the important mutations 
in RT that may confer resistance to LMV onto the 3D model of HBV RT domain.

Co-mutational network analysis. Several co-occurring RT mutations were observed within the various 
mutant HBV strains. Networks of co-mutational sites were created using the Cytoscape software38. Co-mutant 
sites were connected via edges where edge thickness and color depict the frequency of co-mutation and the spatial 
distance between the mutant sites, respectively. Similarly, the distance from the mutant sites with respect to the 
active sites and the bound substrate (TTP) were also calculated and represented as node size within the Cytoscape 
network. Residues within 5 Å distance surrounding the bound substrate were considered as active site center. All 
spatial distances were calculated from the 3D model of HBV RT domain using in-house Perl scripts.

Hydrophobicity plot. Hydrophobicity profiles of epitope regions of HBsAg were investigated using values 
normalized between 0 and 1 by Kyte–Doolittle plot using PROTSCALE program in EXPASY, a Bioinformatics 
Resource Portal. A sliding window of five amino acids with a step size of 1 was applied.

Cloning of full length HBV, introduction of mutation in RT region and tenofovir suscep-
tibility Assay. Full-length HBV genome of genotype D isolated from archival serum sample of a 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:44742 | DOI: 10.1038/srep44742

treatment-naïve, HBsAg- and HBeAg-positive CHB patient was amplified using primers HBVP1 and HBVP239 
(Supplementary Table S6), cloned into pJET1.2 vector using CloneJET PCR Cloning kit (Fermentas) and used 
as WT HBV. The rtH124N mutation identified in this study was introduced in WT-HBV clone (pJET-HBV-wt) 
by Site-Directed Mutagenesis (Agilent Technologies) with specific mutagenic oligonucleotides (rtH124N_F and 
rtH124N_R) (Supplementary Table S6) to generate pJET-HBV-mt (rt124N) that was confirmed by sequencing. 
The linear monomers of WT-HBV or mutant-HBV were released from cloning vectors by SapI digestion and used 
for transfection in Huh7 cells. For antiviral assay, Tenofovir, GS-1278 was provided by Gilead Sciences (Foster 
City, CA, USA) and six-well culture dishes were seeded with 7.5 ×  105 Huh7 cells/well and transfected with 2 μ g  
of linear monomers of WT-HBV or mutant–HBV by using Lipofectamine 2000 (Invitrogen), together with 
pRL-CMV Renilla Luciferase Reporter Vector (Promega), which served as transfection normalization control. Six 
hours after transfection, cells were washed with PBS and the culture medium was replaced with media containing 
tenofovir at concentrations from 0 to 50 μ M. The cells were again fed with fresh medium containing appropriate 
concentration of the drug after seventy-two hours and harvested at day 5 post-transfection. The cells were lysed 
with lysis buffer (50 mM Tris–HCl pH 8.0; 1 mM EDTA; 1% Nonidet P40), HBV DNA was isolated from intracel-
lular core particles as described previously40 and luciferase assay was also performed using a Luciferase Reporter 
Assay kit (Promega). HBV DNA from core particles was quantified by real-time PCR and results were normalized 
to Renilla luciferase readings. The 50% inhibitory concentrations (IC50) of the drug for both WT and mutant HBV 
was determined by a 50% decrease in the amount of intracellular viral DNA detected in treated cells at the end 
of the treatment compared with untreated cells41 and the fold of resistance towards tenofovir was determined by 
dividing mutant IC50 by WT IC50.

Statistical Analysis. Data were expressed as mean ±  standard deviation (SD) or median (range) as relevant. 
Statistical analysis was performed using SPSS 18.0 (SPSS Inc., Chicago, IL). Continuous variables with normal 
and skewed distributions were compared between groups using the Student t test and the Mann-Whitney test, 
respectively. Categorical variables were tested using the Fisher’s exact test. The Benjamini-Hochberg correction 
with a false-discovery rate of 5% was applied to all p-values, to control the proportion of false-positive associa-
tions resulting from multiple testing42. Statistical significance was denoted by p <  0.05.
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