76 research outputs found

    Applied physiology and match analysis of professional rugby league

    Full text link
    University of Technology, Sydney. Faculty of Business.There is a limited amount of research on the match and training demands of rugby league players, particularly at the professional level. As a consequence, many of the testing procedures and training practices for professional players may not be specific to their competition demands. Therefore, the overall aim of this thesis was to gain a greater understanding of the current match demands and physical training regimes of professional rugby league. An additional aim was to develop a match-specific running test and to examine the efficacy of current training programs in professional rugby league. To achieve this, three separate studies were undertaken. Study 1 determined the reliability of a method for measuring time-motion analysis and examined the match demands of professional rugby league competition with regard to playing level and positional roles. In Study 2, a new team-sport running test was developed and the reliability of the physiological responses and physical performance to this test was determined. Study 3 examined the effects of five weeks of general preparation pre-season training on aerobic fitness and match-related sprint performance in elite rugby league forwards. The results show that differences do exist in relation to the physical and game-specific skill match demands, both between levels of competition and positional roles and that pre-season training is effective in increasing aerobic fitness and match-related sprint performance in professional rugby league forwards. Therefore, the differences identified between playing levels and positional roles within this thesis should be used when designing training programs for professional rugby league players. Additionally, it also appears that the specific rugby league testing protocol developed in this thesis can be reliably used to determine the effects of intervention on the match-related performance of professional rugby league players. Overall, this thesis entails valuable information and practical implications for sports scientists, coaches, conditioning specialists, talent scouts and other practitioners involved in the process of optimising performance in professional rugby league players

    Positional match demands of professional rugby league competition

    Full text link
    The purpose of this study was to examine the differences in physical performance and game-specific skill demands between 5 positional groups in a professional rugby league team. Positional groups consisted of the backs (n = 8), forwards (n = 8), fullback (n = 7), hooker (n = 8), and service players (n = 8). Time-motion analysis was used to determine physical performance measures (exercise intensity, distance travelled, time, frequency, and speed measures) and game-specific skill measures (ball carries, supports, ball touches, play the balls, and tackling indices) per minute of playing time. The main finding was that the fullback completed more very high-intensity running (VHIR) because of more support runs when compared to all other positional groups (p = 0.017). THe VHIR (p = 0.004) and sprinting indices (p < 0.002) were also greater in the second half of a match for the fullback than in any other positional group. The hooker spent more time jogging than the backs and forwards (p < 0.001) and touched the ball on more occasions than any other positional group (p < 0.001). The backs spent more time walking than the forwards, hooker, and service players (p < 0.001). The forwards, hooker, and service players completed more tackles per minute during a match than the backs and fullback (p < 0.001). The fullback and forwards also ran the ball on more occasions than the backs, hooker, and service players did (p < 0.001). These results show that positional roles play an important part in determining the amount of physical and game-specific skill involvement during match play. © 2011 National Strength and Conditioning Association

    Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills.

    Get PDF
    Purpose To examine tibial acceleration and muscle activation during overground (OG), motorised treadmill (MT) and non-motorised treadmill conditions (NMT) when walking, jogging and running at matched velocities. Methods An accelerometer recorded acceleration at the mid-tibia and surface EMG electrodes recorded rectus femoris (RF), semitendinosus (ST), tibialis anterior (TA) and soleus (SL) muscle activation during OG, MT and NMT locomotion whilst walking, jogging and running. Results The NMT produced large reductions in tibial acceleration when compared with OG and MT conditions across walking, jogging and running conditions. RF EMG was small-moderately higher in the NMT condition when compared with the OG and MT conditions across walking, jogging and running conditions. ST EMG showed large and very large increases in the NMT when compared to OG and MT conditions during walking whilst SL EMG found large increases on the NMT when compared to OG and MT conditions during running. The NMT condition generated very large increases in step frequency when compared to OG and MT conditions during walking, with large and very large decreases during jogging and very large decreases during running. Conclusions The NMT generates large reductions in tibial acceleration, moderate to very large increases in muscular activation and large to very large decreases in cycle time when compared to OG and MT locomotion. Whilst this may decrease the osteogenic potential of NMT locomotion, there may be uses for NMTs during rehabilitation for lower limb injuries

    Movement demands of elite rugby league players during Australian National Rugby League and European Super League matches

    Get PDF
    This is the authors' PDF version as accepted for publication of an article published in International Journal of Sports Physiology and Performance© 2014. The definitive version is available at http://journals.humankinetics.com/ijsppThis study compared the movement demands of players competing in matches from the elite Australian and European rugby league competitions

    The movement and physiological demands of international and regional men’s touch rugby matches

    Get PDF
    This study compared the internal and external match demands imposed on international and regional standard male touch rugby players. The study adopted a cohort design with independent groups. Twelve international players (mean age 27.8 ± 6.2 y, body mass 72.8 ± 3.7 kg, stature 174.5 ± 5.4 cm) and nine regional players (mean age 25.5 ± 5.5 y, body mass 74.2 ± 7 kg, stature 174.1 ± 7 cm) were analysed during nine competitive matches from the 2013 season. Movement demands were measured using a 5 Hz global positioning system (GPS), alongside heart rate and session rating of perceived exertion (s-RPE) to quantify internal load. Total distance covered by international players was lower than regional players (2265.8 ± 562.3 cf. 2970 ± 558.9 m, p14 km·h) was not different between groups (p>0.05), but relative high speed running (39.3 ± 12.0 cf. 26.0 ± 13.6 m·min) was higher for international players. Regional players performed more absolute low speed activity (≤14 km·h) than international players (p0.05). Very high speed running (>20 km·h) distance, bout number and frequency, peak and average speed were all greater in international players (p<0.05). Higher average heart rate, summated heart rate and s-RPE (p<0.05) indicated higher internal loads during matches for regional players. These data indicate that performance in men's touch rugby is characterised by more relative high speed running and better repeated sprint capacities in higher standard players

    Proposal of a Global Training Load Measure Predicting Match Performance in an Elite Team Sport

    Get PDF
    Aim: The use of external and internal load is an important aspect of monitoring systems in team sport. The aim of this study was to validate a novel measure of training load by quantifying the training-performance relationship of elite Australian footballers.Methods: The primary training measure of each of 36 players was weekly load derived from a weighted combination of Global Positioning System (GPS) data and perceived wellness over a 24-week season. Smoothed loads representing an exponentially weighted rolling average were derived with decay time constants of 1.5, 2, 3, and 4 weeks. Differential loads representing rate of change in load were generated in similar fashion. Other derived measures of training included monotony, strain and acute:chronic ratio. Performance was a proprietary score derived from match performance indicators. Effects of a 1 SD within-player change below and above the mean of each training measure were quantified with a quadratic mixed model for each position (defenders, forwards, midfielders, and rucks). Effects were interpreted using standardization and magnitude-based inferences.Results: Performance was generally highest near the mean or ~1 SD below the mean of each training measure, and 1 SD increases in the following measures produced small impairments: weekly load (defenders, forwards, and midfielders); 1.5-week smoothed load (midfielders); 4-week differential load (defenders, forwards, and midfielders); and acute:chronic ratio (defenders and forwards). Effects of other measures in other positions were either trivial or unclear.Conclusion: The innovative combination of load was sensitive to performance in this elite Australian football cohort. Periods of high acute load and sustained increases in load impaired match performance. Positional differences should be taken into account for individual training prescription

    Local Positioning Systems in (Game) Sports

    Get PDF
    Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications
    • …
    corecore