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ABSTRACT 

This study has investigated prospective secondary mathematics teachers' understanding 

of the concept of irrationality. It could be understood as an inquiry into the obstacles - 

epistemological, intuitive, and didactic - which replicate in individual learners as cognitive 

obstacles, and affect the understanding of irrationality in particular and the notion of real number 

in general. The concept itself is inherently difficult; yet, understanding of irrational numbers is 

essential for the extension and reconstruction of the concept of number from the system of 

rational numbers to the system of real numbers. 

Forty-six prospective secondary mathematics teachers, in their final term of studies 

before certification, participated in the research. The data consists of a written questionnaire 

followed by a clinical interview conducted with sixteen volunteers fiom the group. The group of 

interviewees was chosen to be representative of the entire group in order to capture the diversity 

of conceptions in their various developmental stages. 

The study provides a detailed description and analysis of participants' understanding, 

both formal and intuitive, and it attempts to identify and explain the possible causes of cognitive 

obstacles that impede learners in developing a mathematically consistent understanding of 

irrationality. 

With respect to formal knowledge the study examined participants' ability to classify 

numbers into various number sets, their knowledge of definitions, and their ability to coordinate 

between various representations. Participants' intuitions and beliefs regarding the relations 

between the two sets, rational and irrational, were also examined. Three issues were addressed: 

richness and density of numbers, the fitting of numbers, and operations. The results indicate that 

there are inconsistencies between participants' intuitions and their formal knowledge. 

Explanations used by a vast majority of participants relied primarily on considering the infinite 



non-repeating decimal representations of irrationals, which provided a limited access to issues 

mentioned above. The results can help teachers understand the difficulties that the concept of 

irrational number presents to students. Based on the research findings, we propose a number of 

general recommendations for practice and we provide some specific suggestions on how teachers 

can help students acquire a more profound understanding of number. 
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CHAPTER 1 

Introduction 

People use numbers for three basic purposes in everyday life: counting, ordering, and 

measuring. However simple this may sound, the notion of what constitutes a number is not so 

easily grasped. The student of today must master the concept of number in the mere twelve years 

of formal education, while it took humanity millennia to come up with the modern view of what 

number is. 

As computational needs of people increased through history, new worlds of numbers 

have emerged. For example, in the world of positive whole numbers the need to subtract a larger 

number from a smaller could not be met, and so the world of numbers had to be expanded to 

include negative integers. Now one could freely add, subtract, and multiply but not divide, 

without crossing the borders. The need for unrestricted division forced the expansion of numbers 

to include rational numbers. 

Rational numbers are numbers suitable for counting. With them we can count things or 

parts of things. Many people would agree that the ability to count things is the least that should 

be required from a number, or else it cannot be called a number at all. 

The Pythagoreans in ancient Greece believed that all physical reality could be expressed 

and understood through number, and in particular that all lengths could be expressed in terms of 

ratios of one another. This seems a perfectly reasonable belief. After all we do it all the time 

when we express lengths in terms of a chosen unit, always ending up with a finite decimal or 

fraction. 
- 

Rational numbers have a simple geometrical representation. Mark two distinct points A, 

B on a line. Let A represent 0 and let B represent 1 -the segment AB then represents a unit of 
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length. Positive and negative integers are represented by a set of points on the line spaced at unit 

intervals apart, the positive integers being represented to the right of A and the negative integers 

to the left of A. The fractions with the denominator q may then be represented by the points that 

divide each of the unit intervals into q equal parts. For each rational number there is a unique 

point on the line. The only reason integers and fractions are capable of counting is that they are 

evenly spaced on the number line. For example, if the number line is marked in terms of thirds, 

then one can count thirds. If it is marked in terms of sevenths, then one can count sevenths. In 

any case, the tick-marks on the number line are evenly spaced, and thus they can count. 

To the early mathematicians it seemed evident, as indeed it seems to anyone today who 

has not yet been initiated into the deeper mysteries of the number line, that all the points on the 

number line would be in this way used up; ordinary common sense seems to indicate this. But 

life of human thought is not that simple, and to their great surprise the Greeks and many others 

made a shattering discovery that there are incommensurable lengths, lengths that seemingly 

cannot be measured by rational numbers. Probably the first such discovery that was made was 

that the diagonal of a square is not commensurable with its side length. It must have been a 

genuine mental shock for humans to learn that there are points on the number line not 

corresponding to any rational point. According to Eves (1980), this great moment in mathematics 

occurred sometime in the fifth or sixth century B.C. among the ranks of the Pythagorean 

brotherhood. 

And so we learn, sometime in grade 9 or 10, that there are "numbers" which cannot be 

used for counting. These are the irrational numbers. Irrational numbers are the numeric 

expression of incommensurability. We say that irrational numbers are numbers that cannot be 

written in the form plq with p and q integers and q # 0. 



Concerning the term "irrational", Klein (1932) gives a concise summary. It comes from 

the Greek "alogos" which presumably meant "inexpressible" and implied that the new numbers 

could not be expressed by the ratio of two whole numbers. The Latin word "ratio" that also 

conveys the meaning "reason", gave to "irrational" the unintended meaning "unreasonable", 

which seems to cling to the term "irrational number". 

It was only in the recent history of mathematics that irrational numbers were given the 

status of number. Greek mathematicians mostly confined themselves to such irrationalities that 

could be constructed geometrically using compass and straightedge (those that can be obtained 

by repeated extraction of square root, ex. ,/a'). The general idea of irrational number was not 

yet known to them. 

Much later, in the early 1 6 ~  century, the "equation-solvers" Cardano, Tartaglia, Ferrari 

and others, stumbled over them, not via geometry, but via algebra. They dealt with what we call 

today the "algebraic irrational numbers". Still, these irrational numbers did not have a status of 

number. In fact, nobody could handle them rigorously, so they were often left in symbolic form. 

It took nearly another 300 years, as we shall see from the historical account of these matters, 

before many more irrational numbers, besides the roots, were declared to exist as numbers to 

make the real number system work properly. These are the transcendental numbers. First 

transcendental numbers were discovered by Liouville in the mid-1 800's (for example, he proved 

that the number which has zeros - after the decimal point - everywhere else except at the places 

1,2,6,24, . . ., n!, where it has ones, is transcendental). For practical and theoretical reasons, the 

rational numbers and the irrational numbers have been merged together into the system of "real 

numbers" despite their different natures. 

According to Klein (1932), the general idea-of irrational number first appeared in the 

century as a consequence of the introduction of decimal numbers, in particular, in connection 



with their use in logarithmic tables. Nevertheless, it was not until the later 1800s that 

Weierstrass, Cantor, and Dedekind developed a general theory of irrational numbers. Dedekind 

is said to be the first person who gave a rigorous proof that JZ x J5 = & . This part of the 

historical development will be later discussed in greater detail. 

It is worth mentioning that in school mathematics, until quite recently, irrational numbers 

were named "surds" and used as entities which stood for exact values of incommensurable 

lengths. This term seems to have lingered in ~ritain' longer than elsewhere. Since the term is 

archaic, it is usually reserved for algebraic irrational numbers (as those were the only ones 

known until the 19& century). For example, it would be said "cubic surd", whereas nowadays we 

usually do not qualify the source of an irrational number in school mathematics - we do not say 

"cubic irrational number". 

Little attention is paid to the irrational numbers in school mathematics despite the fact 

that understanding of them is essential in order to have a complete concept of the system of real 

numbers. Furthermore, mathematics education research literature on this topic is scarce. Hence, 

our interest in how an understanding of irrational numbers is developed. 

1.1 Purpose of the Study 

The purpose of this study is to provide an account of prospective secondary teachers' 

understandings and misunderstandings of irrational numbers, to interpret how the understanding 

Typing "surd" in a Web search engine will get many references attesting that the term is still alive today. For 
example, 
http://www.vrojectalevel.co.uk~maths/surds.htm 
http://www.bbc.co.uMeducation/as~unt/maths/l2methodslO lalnebra/02surds/inde~.shtml 
Also in Chrystal's Algebra, an Elementary Textbook (1886) there is a section dealing with a definition of surd 
numbers. 



of irrationality is acquired, and to explain how and why difficulties occur. Implications for 

teaching practices are also proposed. 

One can take the view that we have different cognitive schema, related to a given 

mathematical concept, structured by our previous experience with different representation 

systems. Acting upon new evidence, we are attempting to reconstruct and coordinate those 

mental structures, often through inner negotiation of meanings, to once again achieve 

equilibrium. The idea of human tendency for equilibrium (seeking order and harmony) in the 

field of consciousness first appeared in Gestalt psychology. It was later adopted in Piaget's 

theory of equilibration of cognitive structures (Sierpinska, 1994). For Piaget, assimilation and 

accommodation are two operations of the mind that make the equilibration of cognitive 

structures possible. 

The existence of irrational number is what necessitates the extension of the rational 

number construct into the real number construct. When irrational numbers are introduced, an 

individual must reconstruct his or her notion of number to fit the new evidence into the existing 

cognitive structures. Where once was a fully dense (rational) number line, there seemingly being 

no space for anything else, now a learner must fit many more numbers whose nature is quite 

problematic, i.e. it is highly doubtful whether they even deserve the status of number as they 

cannot be used for counting purposes. This study could be understood as an inquiry into 

prospective teachers' obstacles (cognitive, intuitive, epistemological, and ontological) affecting 

the understanding of irrationality in particular, and the notion of real number in general. 

The NCTM's Principles and Standards for School Mathematics suggest that "high school 

students should understand more fully the concept of a number system, how different number 

systems are relatedyad whether the properties of one system hold in another system." 

Furthermore, this document states the following: 



Whereas middle-grades students should have been introduced to irrational numbers, high school 

students should develop an understanding of the system of real numbers. They should understand 

that given an origin and a unit of measure, every point on a l i e  corresponds to a real number and 

vice versa. They should understand that irrational numbers can only be approximated by ii-actions 

or by terminating or repeating decimals. They should understand the difference between rational 

and irrational numbers. Their understanding of irrational numbers needs to extend beyond R and 

& . (pp. 29 1-292) 

Clearly, the idea is that students obtain an understanding beyond the mere ability to 

recognize and classify numbers. These skills could be achieved without understanding, by 

memorizing and attaching the labels without necessarily having an underlying meaning 

developed. However, we wish that students attain a robust and lasting knowledge which is 

possible only if they can see meanings and mathematical relationships underneath the surface of 

labels. If students are to develop these understandings the teachers must first possess them. It is 

our contention that a close look at the prospective teachers' understanding of the number systems 

is a good place to start an investigation of these matters. 

1.2 Personal Motivation 

There are three reasons that I was personally motivated to research this particular topic. 

Firstly, it has been a pivotal point in my personal struggle to make sense of mathematics. For me, 

it opened a very special perspective on all of mathematics. The journey has been long and hard, 

yet intellectually very satisfying. Of course, it did not happen in a instant, but rather bit by bit, 

surely starting with the Pythagorean Theorem, through the ideas of incommensurability, through 

various proofs of irrationality, to grappling with infinities of several k i d s  and seeing the striking 

abu@ance of these numbers. I believe that anyone who explores a bit further, what it means to 



have lengths to which we cannot attach a whole number or even a ratio of whole numbers, is 

bound to find it a very interesting and exotic concept. 

Secondly, research on this topic is very scarce. There is plenty of research on students' 

learning and understanding of rational numbers. But there is very little research on how learners 

acquire an understanding of the real number system. Perhaps the reason for this is that the field 

of mathematics research is a very young field and it is natural that many researchers focus on 

"first things" first. But what happens after the rational number construct has been mastered by 

the learner? After all, according to most standard curriculums, it is assumed that this should 

happen by grade 9. One of the first shocking realizations is that rational numbers comprise a very 

tiny part of that which is called "number" today. In fact, surprising as it sounds to a novice, when 

picking a number from a number line at random, the probability of getting a rational number is 

zero. Of course, that is not to say that rational numbers are any less important - the point I am 

trying to make is that mathematics teachers need to have knowledge about how people 

conceptualize irrational numbers so as to not hinder further understanding in students. 

Thirdly, I believe that understanding the nature of irrational number, beyond being able 

to identify it as a non-periodic infinite decimal, is of great importance for seeing the 

connectedness of mathematics within. While it is impossible to distinguish any characteristics 

that an irrational might possess by examining its decimal expansion, irrationals do arise in 

algebraic contexts (as roots of polynomial equations), in geometric contexts (as ratios of lengths 

in geometric objects), and in analytic contexts (the base of natural logarithms - number e; also as 

limits of infinite decimal expansions of rational numbers). Furthermore, an irrational number 

might have a natural habitat in several contexts, for example f i  is both a diagonal of a unit 

square as well as an algebraic entity as a solution of x2 = 2. 
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In addition to helping students see the connections within mathematics, we strive to help 

students see how mathematics is connected to real world. It is interesting to point out to students 

that irrational number is where mathematics and physical world manifest dramatic connections. 

Just look at the simplest forms such as circles, squares, equilateral triangles, . . . they all involve 

irrational numbers. Moreover, all empirical evidence suggests that the results of physical 

measurements are intrinsically irrational. Each time we increase the precision of any instrument, 

the new digits we discover add to a string that neither terminates nor repeats. 

A vast amount of experimental data spanning several centuries confirms this contention, and there 

is no empirical evidence to repudiate it. Even quantum numbers, which by theoretical defmition 

are integers or rational fractions, are meaningful only as rational multipliers of measured and 

irrational physical constants; ... for now, my point is that scientific inquiry rides on a thruway 

paved mostly by irrational numbers. (Zebrowski, pp. 10- 1 1) 

Of course, for daily purposes of majority of people rational approximations suffice. 

However, in my perspective the utilitarian purpose of mathematics is not the main reason why 

we learn it (that should come as a by-product). To evolve in our thinking capacities, and 

understand the world we live in is at least as important of a goal. Therefore, the power of 

mathematics to describe and explain the physical universe should be seen as truly a wonder in 

itself. 

Having said that, I believe we would do a great service to students by helping them gain 

an appreciation for these numbers and some insight into their origin and nature. The study of 

irrational number is surely one of the opportunities in school mathematics where a teacher can 

convey to students that mathematics is a very interesting subject to be understood. - 



1.3 Thesis Organization 

The thesis is organized into nine chapters. Chapter 1 is an introduction. It includes the 

purpose of and the personal motivation for conducting the study on prospective secondary 

mathematics teachers' understanding of the concept of irrational numbers. 

Chapter 2 provides an examination of the literature in two areas. The first part is a 

synopsis of the historical development of the concept of irrational numbers. The second part 

discusses the findings from the mathematics education research literature that are relevant for the 

study. 

Chapter 3 outlines the theoretical considerations guiding the inquiry of the study. 

Terminology used throughout the thesis is introduced and clarified in this chapter. 

Chapter 4 describes the issues inherent in the understanding of the concept of 

irrationality. The four specific areas of focus are also declared in this chapter. 

Chapter 5 details the methodology for the study. It includes a description of the 

participants and setting, as well as the particulars regarding data collection and data analysis. 

This chapter also contains a detailed analysis of the tasks used in data collection. 

Chapter 6 presents the results and analysis of the participants' responses from the 

perspective of formal mathematical knowledge of irrational numbers. The formal knowledge 

analyzed includes classification of numbers into various number sets, ability to translate between 

various representations of irrational numbers, and the knowledge of definitions. 

Chapter 7 describes the results and analysis of the participants' responses from the 

perspective of intuitive mathematical knowledge, such as the existence and density of irrational 

numbers and how numbers from the two sets, rational and irrational, fit together on the real 

number line. Participants' intuitions about the effects of operations between members of various 

number sets are also analyzed in this chapter. 
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Chapter 8 presents recommendations for classroom instruction and pedagogical practice. 

Several "foundational algorithms" aimed at developing a fuller understanding of irrationality are 

introduced in this chapter. 

Lastly, Chapter 9 presents the conclusions and limitations of the study. It finishes by 

commenting on the direction of further research. 



CHAPTER 2 

Irrationals in the History of Mathematics and in Educational Research 

Philosophically the irrationals, as a family of numbers, cause ontological problems. Since it is 

(generally) impossible to describe the exact decimal expansion of such numbers, their very reality 

can be called into question. In fact, it was not until the mid-1800s that mathematicians confi-onted 

this problem directly. The upshot of this confrontation was that the irrational numbers were 

postulated to exist. In other words, the mathematicians axiomatized their way out of the dilemma 

by saying that all decimal expansions exist as numbers even if we do not know precisely what they 

are. This axiom is called the completeness axiom. (Stevenson, p. 2 14) 

The purpose of this chapter is twofold. First, a brief synopsis of the historical 

development of the notion of irrational numbers is provided. Second, relevant background fiom 

the educational research is outlined. 

2.1 Historical Background 

The focus of the above quote is not on algebraic irrational numbers such as square root of 

two, the existence of which is undeniable, but on the so-called transcendental numbers, which 

account for the nondenumerability of the real numbers. Note that algebraic irrational numbers, 

such as square root of two, are denumerable because they are solutions of polynomial equations 

with integer coefficients, which are denumerable as well. 

A historical account of these developments in mathematics can be found, for example, in 

the recent work of Lakoff and Nmez, Where Mathematics Comes From (2000). For our purpose 

it suffices to say that in the mid-19* century there - were two rival theories. A theory involving 



infiitesimals2, believed by some authors (as well as mathematicians) to be more intuitively 

plausible, has been pushed aside in favour of what we see today as the mainstream theory linking 

numbers, points on the line, and sets (including infinities) developed by Dedekind, Weierstrass, 

and Cantor. 

Dedekind's work succeeded to explain irrational numbers in terms of rationals, which in 

turn can be understood in terms of the natural numbers. The motivation for this work comes from 

the desire to put "calculus on a secure foundation", in other words, to reconceptualize calculus as 

arithmetic, fiee from geometric methods (as employed by Leibnitz). 

. . .Dedekind was profoundly dissatisfied with the way calculus had been developed -namely, 

through geometric notions like secants and tangents. Calculus was, after all, part of the subject 

matter of arithmetic functions and so ought properly to be understood in terms of arithmetic alone 

and not geometry.. . How, he asked, could continuity be understood in arithmetic terms? The key, 

he believed, was the real numbers. (Lakoff &NMez, pp. 293-294) 

The "arithmetization of calculus" (Lakoff & Nsez ,  p. 293), also referred to as the 

"discretization program" (ibid., p.292), gave birth to the formal construct known to us today as 

the "real number line". In short, this is how it happened. Already Pythagoreans observed that 

there exist incommensurable line segments. That is, when rational numbers, as we understand 

this term today, are associated with points on the line, there are points not associated with any 

rational number, which creates a problem. This not only upset their basic assumption that 

everything depends on whole numbers, but it also upset Pythagorean theory of proportion and it 

rendered their general theory of similar figures invalid, as their defintion of proportion assumed 

2 It is worth mentioning that there are other notions of real number, besides the Cantor-Weierstrass-Dedekind one. 
Under the umbrella called "nonstandard analysis" there thrive number systems known as "hyperreal" (A. Robinson, 
Nonstandard Analysis) and "surreal" (J. Conway), both containing numbers which are infinitely large or small 
(infiiitesimals). 
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any two like magnitudes to be commensurable (Eves, 1990). For some time & (or possibly 

(& - 1) 12, which is the ratio of a side to the diagonal of a regular pentagon) was the only 

known irrational. Later Theodorus of Cyene (ca. 425 B.C.) showed that 

&,&,&,fi,&,fi,fi,l/iZ,a,m,fi, and J1? are also irrational. About 370 B.C. 

the "scandal" was resolved by Eudoxus, a pupil of Plato, who reinvented the theory of proportion 

to include incommensurable lengths. His treatment appears in the fifth book of Euclid's 

Elements and coincides essentially with the modem exposition of irrational numbers that was 

given by Richard Dedekind in 1872 (ibid.). Still, the Greeks confined themselves to the study of 

such irrationalities as one obtains by a repeated extraction of square root - those which can be 

constructed geometrically by straightedge and compass. The general idea of irrational number 

was not yet known to them. More precisely, the Greeks possessed no method for producing or 

defining, arithmetically, the general irrational number in terms of rational numbers. 

The general idea of the irrational number appeared first at the end of the sixteenth century 

as a consequence of the introduction of decimal fractions, the use of which became established at 

that time in connection with the appearance of logarithmic tables. When a rational number is 

represented as a decimal, it may be a finite decimal or an infinite periodic decimal. Now there is 

nothing to prevent our thinking of an aperiodic decimal whose digits proceed according to any 

definite rule whatever or according to no rule at all. Anyone would instinctively consider it as a 

number, however, not a rational one. By this means the general notion of irrational number is 

established. It arose to a certain extent automatically, by the consideration of decimal fractions. 

Historically, a similar thing that happened with negative numbers also happened with irrational 

numbers. Calculation forced the introduction of the new concept, and without being much 
- 

concerned with its nature or motivation, people simply operated with these numbers as that 
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proved to be extremely useful. Still, there was no satisfactory theory of irrational numbers. The 

mathematical community felt there was a need for a more precise arithmetic formulation of the 

foundations of irrational numbers. 

Dedekind set out to resolve this problem. The source of this problem is that the line, 

understood naturally, is continuous, whilst numbers are discrete; that is, each number is an entity. 

So in order to have a one-one order preserving correspondence between points and numbers, the 

numbers must be declared continuous too (or the line must be discretized). 

There is a guarantee of no "gaps" in the real numbers, by decree. A historical account of 

how this came about appears in Klein (1932). 

Corresponding to every rational or irrational number there is a point which has this number as 

abscissa and, conversely, corresponding to every point on the line there is a rational or irrational 

number, viz., its abscissa. Such a hdamental principle, which stands at the head of a branch of 

knowledge, and fiom which all that follows is logically deduced, while itself cannot be logically 

proved, may properly be called an axiom. Such an axiom will appear intuitively obvious or will be 

accepted as a more or less arbitrary convention, by each person according to his gifts. This axiom 

concerning the one-to-one correspondence between real numbers on one hand, and the points of a 

straight line on the other, is usually called the Cantor axiom because G. Cantor was the first to 

formulate it specifically in the Mathematische Annalen, vol. 5, 1872. (p. 34) 

It is said that the real numbers "exhaust" the (real) number line. This is technically 

achieved via the so called "Dedekind cut" (any partition of the rationals into an Upper and a 

Lower Class), which is Dedekind's definition of what "real number" means. In other words, 

"Dedekind cut" is used to define irrational number as being the "cut" between two sets of 

rationals. This way numbers determine what points are. By completing the set of rational 

numbers with the set of irrational numbers we get the real numbers. - 



As we can see, it took about 2500 years fiom the discovery of irrationals as 

incommensurable lengths to the construction of the system of real numbers using infinite sets of 

discrete elements. How do these diflicult ideas translate in school mathematics? Do they impact 

prospective teachers' conceptions of irrationality? 

2.2 Educational Research 

In this part we present literature review as it relates to the various issues one may 

encounter in the process of understanding the irrational number construct. As noted earlier, not 

much research is available on this topic. On the other hand, a great deal of research has been 

invested in how students acquire the knowledge of rational numbers and, on a closely related 

matter, how they attain proportional reasoning. Considering the fact that irrational number is 

defined in school mathematics as a number which is not rational, it is clear that the 

understanding of irrationality cannot be investigated in the absence of rational number referents. 

Given that this study involves prospective teachers, and not developing children, we assume 

solid understanding of rational number is in place. As the understanding of rational numbers is 

not of our primary concern here, yet it is an essential prerequisite for understanding irrationality, 

a very brief recapitulation of this research is presented here. 

A recent extensive study of children's development of meanings and operations with 

rational numbers, conducted by Lamon over the span of four years, focuses on how the various 

representations and interpretations of fractions affect students' understanding of rationality 

(Lamon, 2001). Other authors have investigated students' abilities to perform both translations 

of a given idea from one representational system and transformations within a given 

representational mode in the context of development of the rational number construct (Lesh, 

Post, Behr, 1987). Still others studied the role of representation (common unit vs. composite) in 
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the process of teaching decimal numbers. For example, researchers analyzed how manipulating 

representational support during the instruction of procedures (such as marking positions of 

decimal fractions on a number line) affects gains in the conceptual knowledge. They investigated 

the effects of varying the representational mode; that is, using the idea of common unit (0.123 

seen as one hundred twenty-three thousandths) versus using the idea of composite units (0.123 

seen as 1 tenth and 2 hundredths and 3 thousandths) (Rittle-Johnson, Siegler, Alibali, 2001). In 

summary, research efforts seem to be centering around identifying which representations are 

more likely to result in students' independent transfer of knowledge to various subconstructs of 

rational number, and how the learning environment design decisions, especially representational 

ones, contribute to a robust understanding of rationality (Kaput, 1994). 

Further concerning rationality, of greater relevance to this study is the research on how 

learners think about infinite (periodic) decimal expansions of rational numbers. Several 

researchers have documented the persisting difficulty of accepting that 0.9 =1 (Sierpinska, 

1987). Mamona-Downs, who conducted a study on 20 English and 20 Greek students in their 

final year of high school, found that there are important influences related to the educational 

background of a pupil affecting hisher approach to this result. Major reasons for the widespread 

disbelief of this result are reported to be: a) the feeling that a decimal expression for a number 

should be unique (i.e., if objects have different representations, especially in the same system, 

then they are different), b) the feeling that 0.1 is an on-going sequential process ruled by time 

that never actually reaches 1, and c) the infinitesimal reasoning, by which the 0.3 is regarded as 

a completed process of an infinite procedure where the difference between the two is infinitely 

small, but not 0 (Marnona-Downs, 2001). On the same issue, Sierpinska (1987) reports that the 

attitudes towards mathematical knowledge (mathematical validity vs. the absolute truth value) 
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and infinity (potential vs. actual), determine the students' attitudes towards this result. Consistent 

with Mamona-Downs, Sierpinska found that some students hold models of infinite decimals such 

that the sequence of decimals is a function of time (0.9 comes arbitrarily close to 1, but can 

never reach it), and also that the set of real numbers is dense but not necessarily continuous. 

From the perspective of instructional strategies and suggestions for practice, Sinclair 

(2001) offers a visual calculator with a hundred-digit display to facilitate the perception of 

rational numbers (and their classes: terminating, periodic, and eventually periodic) and real 

numbers at the middle-school level. In this environment students experiment and find out for 

themselves what is interesting or significant to know about fractions; in particular, fractions are 

seen as patterned objects rather than parts of a whole prompting students' sense-making of the 

characteristics of rational numbers. 

To the best of our knowledge, there are very few studies in the educational research 

literature that explicitly focus on the concept of irrational numbers. The main objective of the 

study by Fischbein, Jehiarn, and Cohen (1995) was to survey the knowledge that high school 

students and preservice teachers possess with regard to irrational numbers. This study assumed, 

on historical and psychological grounds, that the concept of irrational numbers faced two major 

intuitive obstacles, one related to the incommensurability of irrational magnitudes and the other 

related to the nondenummerability of the set of real numbers. Contrary to expectations, the study 

found that these intuitive difficulties did not manifest in the participants' reactions. Instead, it 

was reported that subjects at all levels were not able to define correctly the concepts of rational, 

irrational, and real numbers. Many students could not even identify correctly various examples 

of numbers as being whole, rational, irrational, or real. The study concluded that the two intuitive 

obstacles mentioned above arenot of a primitive nature - they imply a certain intellectual 

maturity that the subjects of this study did not possess. Fischbein et al's study used a written 



response questionnaire administered to 62 students (grades 9 and 10) and 29 prospective 

teachers. 

A study of Peled and Hershkovitz (1999), which involved 70 prospective teachers in their 

second or third year of college mathematics, focused on the difficulties that prevent student 

teachers from integrating the various knowledge pieces of the concept into a flexible whole. 

Contrary to Fischbein et al. study, these researchers found that student teachers knew the 

definitions and characteristics of irrational numbers but failed in tasks that required a flexible use 

of different representations. They identified the misconceptions related to the limit process as the 

main source of difficulty. 

In their work on using history of mathematics to design pre-service and in-service teacher 

courses, Arcavi, Bruckheimer and Ben-Zvi (1987) report several findings that are of interest here 

as they relate to teachers' knowledge, conceptions, andlor misconceptions regarding irrational 

numbers. One of the most striking discoveries from their study is that there is a widespread belief 

among teachers that irrationality relies upon decimals. This study was conducted on 84 in-service 

teachers who attended a summer teacher training program related to a national mathematics 

curriculum for junior high schools in Israel. Arcavi et al. report that 70% of teachers knew that 

the first time the concept of irrationality arose was before the Common Era (Greeks). However, 

although the majority knew "when" it arose, very few also knew "how" it arose. This became 

particularly apparent when they were asked to order chronologically the appearance of three 

concepts: negative numbers, decimal fractions, and irrationals. 55% percent of teachers (and an 

additional 10% did not answer) indicated that decimal fractions preceded irrationals in the 

historical development. The authors concluded that this not only indicated the lack of knowledge 

about the relatively recent development of decimals, but more importantly, it indicated that the 

origin of the concept of irrationality, although associated with the Greeks, is conceived as relying 



upon decimals, and not connected to geometry as occurred historically (commensurable and 

incommensurable lengths). Arcavi et al. (1987) point out that " the historical origins of 

irrationals in general, and the connections to geometry in particular, can provide an insightfhl 

understanding of the concept as well as teaching ideas for the introduction of the topic in the 

classroom" (p. 1 8). 

As a commentary, we find it interesting to point out that the three concepts mentioned in 

the Arcavi et al. study are generally introduced to students in the reverse order from how they 

developed historically. The concept of irrationality received its first proper theoretical treatment 

by Eudoxus around 400 B.C., and it appears in Euclid's Elements (Eves, 1990). On the other 

hand, decimals were introduced by Simon Stevin in his De Thiende in 1585 (2000, Schultz). 

Historically, the first formal introduction to negative numbers appears in introduction to Algebra 

by Leonard Euler in 1770. 

Consistent with the Fischbein et al. study, Arcavi et al. found that many teachers had 

trouble recognizing numbers as being rational or irrational. Given a list of seven numbers to 60 

prospective teachers from various teacher colleges on the pre-test at the start of the course, 60% 

of the respondents had two or more errors, the most common one being that 2217 is irrational. 

This was the question that was administered: 

Indicate the irrationals among the following numbers. 

The researchers found that the commonly used rational approximation for n is being 

confused with the irrational number itself. Although the approximation is good enough for many 
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practical purposes, the distinction should be very clear - certainly to the teacher. Furthermore, as 

evident fiom the post-test, the problem of confusing the irrational ( n:) with one of its rational 

approximations (2217) persisted even after the formal instruction, but to a lesser extent. The 

authors state they are not sure whether these subjects experienced a general confusion between 

an irrational and its rational approximation or is this something particular connected to n: and 

2217. We shall follow up on this later. 

On a related matter, as a part of their study on prospective elementary teachers' 

conceptions of rational numbers involving 147 participants, out of which 121 were non- 

mathematics majors, Tirosh, Fischbein, Graeber, and Wilson (2003) report on the results on tasks 

involving class membership identification of numbers, relations between various sets, and 

definitions of rational and irrational numbers. They found that while the vast majority of the 

mathematics majors (92%) correctly defined rational and irrational numbers, only 23% of the 

others were able to do so. Further, 81% of the mathematics majors and 25% of the non- 

mathematics majors drew an adequate Venn diagram to describe the relations between the 

natural numbers, the integers, the rational numbers, the irrational numbers, and the real numbers. 

Concerning the identification of the set membership of various numbers, according to these 

authors, performance was very poor. For example, only 8% and 22% of the prospective teachers, 

respectively, knew that 0 and 0.25 1 were rational numbers and 24% percent argued that 210 was 

an integer. Confusion reigned concerning the notion of real numbers -- the majority of the 

prospective teachers mistakenly identified "real numbers" with "positive numbers", and 

consequently argued that all the given numerical expressions, except -815 and -3, were real 

numbers. Others argued that real numbers were "nice numbers", namely that 0.42,0.251,23149, 

0/2,2/0, and -3 were real numbers, while 0.121221222, and 0 were not. 
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These researchers also report on prospective teachers' thinking about the density of 

rational numbers. For example, they found that only 24% knew that between 114 and 115 there 

are infinitely many numbers, whilst 43% claimed that there are no numbers between 114 and 115. 

Moreover, 30% of the participants claimed that 114 is the successor of 115. With regard to 

decimals, the results were somewhat better. For instance, 40% knew that between 0.23 and 0.24 

there are infinitely many decimal numbers and could even present some of them. In our study we 

examined to what extent these findings hold true for prospective secondary mathematics 

teachers. 

When thinking about irrational numbers, we cannot avoid thinking about infinity. 

Whereas Fischbein et al. (1995) suggest that a certain stage of cognitive development must be in 

place before a person can contemplate the idea of nondenumerability of the set of reals, Tall 

(2001), on the other hand, maintains that obstacles lie in the differences between the 'natural 

infinities', a term he uses to describe children's conceptions of infinity which are based on 

extending everyday finite experience, and 'formal infinities', which arise by selecting different 

axioms as foundations for infinite concepts. It has been observed that people intuitively conceive 

the notion of number as a crude kind of measurement rather than in a cardinal sense. Children 

have no conception of the difference between the 'rational ~ontinuum'~ and the real continuum, 

which have different cardinalities, nor the fact that real intervals of different length have the 

same cardinal number (Tall, 1980). For example, when presented with two line segments, one 

twice as long as the other, they invariably respond that both have infinitely many points with the 

longer one having twice as many points as the shorter one. Unless they were re-educated to 
- 

3 Tall uses this term when talking about children's perceptions of the rational numbers. Given that between any two 
rational numbers, no matter how close they are, there are infinitely (albeit denumerably) many rational numbers, the 
perception is one of it being a dense set, thus "continuous". 
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accept that such phenomena occur with infinite cardinals, these intuitions about iniinity will 

present a conflict within the cardinal framework. Cantor's cardinal set theoretic interpretation of 

infinity is purely formal. Yet children do not have access to the formal schemas of mature 

mathematicians. In other words, the contradiction arises fiom attempting to impose a framework 

of interpretation based on experience with finite sets. 

It is a common occurrence in the development of mathematical ideas, both in the history 

of mathematics and in the development of the individual, that within a given context certain facts 

hold true but break down when the context is broadened. For example, the fact that a proper 

subset of a set has a smaller number of elements is true for finite sets, but breaks down in the 

infinite case. Expectations based on experience with finite sets are defjing when extrapolated to 

the infinite sets within the paradigm of the "Theory of Transfinite Numbers". Tall (1 980) notes 

that "such intuitions based on implied truths in a restricted context can cause serious conflicts 

when the context is broadened" and further that "these conflicts are all the more serious when 

they are subliminal, unspoken and, as a consequence, unnoticed" (p. 282). 



CHAPTER 3 

Theoretical Considerations 

The purpose of this chapter is to outline the theoretical considerations guiding our 

inquiry. Theoretical ideas from the existing body of educational research that proved valuable in 

our struggle to analyze, understand, and organize our findings on how people think about 

irrational numbers are described and discussed in this chapter. As well, some of the terminology 

that is used throughout the thesis is introduced and clarified here. 

Practice shows there are differences between mathematical theories and cognitive beliefs 

in many individuals. Learning typically consists of the individual body of knowledge fitting with 

the collective body of knowledge. Tall and Vinner (198 1) use the term concept image to describe 

"the total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes" (p. 152). According to these researchers, 

concept image grows and changes with experience and its various parts develop at different 

times and in different ways. What we attempt to do in mathematics is to build up as coherent an 

image as possible. As learners, we attempt to reconstruct our knowledge to resolve the conflict 

between old experiences and new evidence. 

For any concept, this involves the reconciling of personal informal image, to which we 

will usually refer as "understanding" or "conception", with formal image, to which we will 

commonly refer as "knowledge" (ibid.). Following this, we can say that good understanding of a 

given concept constitutes knowledge of that concept. For example, we may say that a person has 

knowledge of a given concept if his or her personal understanding of the concept is in agreement 

with the shared formal mathematical theory supporting this concept. 



3.1 Dimensions of knowledge 

For the purpose of our study, we adopt the conceptual framework suggested by Tirosh 

(2000) in their study of teachers' understanding of rational numbers. The basic assumption of 

this framework is that learners' mathematical knowledge is embedded in a set of connections 

among algorithmic, intuitive and formal dimensions of knowledge. 

The algorithmic dimension is procedural in nature - it consists of the knowledge of rules 

and prescriptions with regard to a certain mathematical domain and it involves a person's 

capability to explain the successive steps involved in various standard operations. The formal 

dimension of knowledge is represented by definitions of concepts, operations, and structures as 

well as by theorems and their proofs. The intuitive dimension is composed of our ideas and 

beliefs about mathematical entities and it includes mental models we use to represent number 

concepts and operations. As well, intuitive knowledge can be observed through competency in 

evaluating the adequacy of statements related to arithmetic operations, such as "multiplication 

always makes bigger". Intuitive knowledge is characterized as the type of knowledge that we 

tend to accept directly and confidently - it is self-evident, intrinsically necessary and 

psychologically resistant (Fischbein, 1987). Some characteristics of intuitive knowledge are 

discussed in greater detail later, in the section 3.4. 

Ideally, the three dimensions of knowledge should cooperate in any mathematical activity 

such as concept acquisition and problem solving. Furthermore, it is well known that both the 

formal and the algorithmic dimensions can become highly procedural and rote for the learner. 
- 

Their vitality depends upon the student's constructing consistent connections among algorithms, 

intuitions, and concepts. 



According to Tirosh, Fischbein, Graeber, and Wilson (2003), many prospective teachers', 

especially those that did not have a major in mathematics, based their conceptions of numbers 

almost entirely on natural numbers. For instance, there was a wide-spread belief that "division 

always makes smaller". This belief is grounded in the partitive model of division applied to 

natural numbers, which is essentially the "sharing" metaphor, most often used in the earliest 

stages of learning about division. In this model, one is restricted to division by a whole number; 

for example, a given number of items (say, 24 chocolates) are shared equally among a given 

number of people (say, 6 children). Each person gets less than the initial amount. The study 

reports that people tend to transfer the constraints of operations with natural numbers. This is 

seen as one of the stumbling blocks in the transition from natural to rational numbers. A short 

summary of the major findings of this study is provided in the previous chapter. We reconsider 

some of these findings here in light of the presented theoretical framework. 

The inadequate model of division discussed in this study seems to linger well after more 

inclusive higher level models have been taught, and it acts as an intuitive obstacle causing many 

difficulties, such as the well-documented inability to create representations of operations 

involving fractions. When dividing by a divisor smaller than one, these teachers would multiply 

the two numbers instead, or they would reverse the dividend and the divisor, or they would 

proceed according to a memorized procedure without being able to explain the result (ibid.). 

Concerning the algorithmic knowledge of multiplication of decimal numbers, prospective 

teachers had a great deal of difficulty justifying the placement of the decimal point in the 

product. Researchers report that they were unable to call upon their knowledge of fractions or 

their knowledge of multiplication with whole numbers as possible sources for answers, and that 

they were surprised that there should be a need to explain why certain algorithmic steps are 

performed the way they are. 
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In the case of rational numbers, mistakes based on formal knowledge were reported as 

incorrect performance due to limited conception of fraction as well as inadequate knowledge 

related to the properties of operations. For example, most participants' conception of fraction 

rested on the part-whole interpretation, which gives a limited access to interpreting the meaning 

of operations with fractions. When asked to illustrate 513 they were unable to do so. A typical 

approach was to draw a rectangle, partition it into three sections and then append two equally 

sized sections. This resulted in a rectangle with five sections, which was consequently evaluated 

by participants themselves as incorrect and justified as "you can't illustrate 513 of a whole" 

(ibid.). In the realm of operations, there has been a reported "bug" in the formal knowledge, 

namely that students think that division is commutative and consequently argue that l+(1/2)=112 

because 1 +(112)=(1/2) + 1 = 112. 

Interestingly, mistakes such as these seem to appear inconsistently. For instance, all the 

subjects who argued that division always makes smaller, correctly computed at least some of the 

division problems that resulted in a quotient that was greater that the dividend. Nevertheless, 

these mistakes do stem fiom systematic line of thinking -they are not just sporadic errors. After 

all, people argued that division always makes smaller. It would seem that depending on how 

strong the intuitions are, people tend to adapt their formal knowledge and their algorithms to 

accommodate their beliefs, perhaps as a result of a natural tendency towards consistency. 

Inconsistencies then, might be the result of the counteraction of the deeply engrained procedures 

that manifest when the person is not watchful of his or her beliefs, but does things automatically 

instead. 

In light of this discussion, we examined in what ways and to what degree the findings 

related to rational numbers and demonstrated by the support of this framework apply to our 

study. As noted, the three dimensions of knowledge are not discrete; they overlap considerably. 



However, for the purpose of analyzing subjects' mathematical understanding of irrationality we 

find it useful to focus on each of them separately, considering relationships between them or lack 

thereof. 

Therefore, we focus on the formal, algorithmic, and intuitive dimensions of knowledge of 

irrational numbers and we draw connections between the dimensions. According to this 

framework, inconsistencies between a learner's algorithmic, intuitive and formal knowledge are 

often the source of misconceptions, cognitive obstacles, and other common difficulties. We 

strive to spotlight these inconsistencies and explain their causes. 

3.2 Process - object duality 

Various authors have developed theories about concept acquisition and many of them 

seem to run the same thread based on the conclusion that abstract mathematical notions, such as 

number, can be conceived in two fundamentally different, but complementary, ways: structurally 

- as objects, and operationally - as processes (Sfard, 1991). We draw on the work of authors 

such as Sfard, Dubinsky, and Tall in our inquiry of how prospective teachers understand 

irrationality. 

Sfard argues that the ability of seeing a number, or any mathematical concept for that 

matter, both as a process and as an object is indispensable for a deep understanding of 

mathematics. She proposes a model of concept formation, in which a certain mathematical 

notion is regarded as fully developed only if it can be conceived both operationally and 

structurally. There is a duality, not a dichotomy, between the structural and operational 

mathematical thinking related to any given concept. Although they are mutually dependent, the 

structural conception is very difficult to attain as it is much more abstract -- it requires a 

qualitative leap, or an ontological shift, that is, an ability to see the familiar thing in a completely 
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new way. This happens in the rezj?cation stage of concept development, which is the last stage of 

the three-stage model proposed by Sfard (we outline this model in the next section). Dubinsky 

(1991) refers to the attainment of this stage as the "encapsulation." 

According to these researchers, being capable of seeing a concept from either of the two 

viewpoints, as a process and as an object, and flexibly coordinating the two approaches, 

depending on the situation, appears to be an essential component of mathematical ability. For 

example, Tall (1995) speaks of this using the idea ofprocept, which refers to the duality of 

mathematical symbolism to represent both process (such as the subtracting of two numbers 5-2) 

and the product of that process (the difference 5-2). Proceptual thinking is seen as the ability to 

flexibly move between this amalgam of process/concept (process/object in Sfard's language) 

ambiguity. The question is then, how is this quality of thinking acquired. 

3.3 Concept formation 

Tall (1995), following the ideas of Brunner (1966), addresses the issues of cognitive 

development. In the context of individual's acquisition of a mathematical concept, cognitive 

development is seen as a journey starting from enactive interaction with the environment, 

followed by visual and symbolic representations interacting with one other, finally giving rise to 

the need for formal definition and proof. There is a sequence of stages where the meaning 

changes. Objects are initially perceived as physical examples. Visual representations take on 

successively more subtle meaning until they become "the perfect abstract counterparts of 

physical experience" (Tall, 1995, p. 3). 

According to Tall (2001), in elementary mathematics, given the cognitive structure and 

representations available to the individual, this is the direction of concept formation: enactive 

interaction (for example, in its most primitive form, this involves carrying out a physical action 



to demonstrate the truth of something), followed by (visual or symbolic) representations, 

followed by (more or less formal) description (which can be seen as surrogate definition). If 

there is a mismatch, it is the description that is (usually) changed, not that which had been 

established in previous phases. 

In higher mathematics this flow is reversed. Here it is the definition, which comes to have 

primacy. The formal concept is constructed fiom the formal definition, and the properties of the 

formal object are only those which can be deduced fiom the definition. A huge cognitive struggle 

is required in order to establish the definition as the basis of concept construction. 

Formal image of irrational number, and even more so the formal image of the real 

number system, build on definition and deduction rather than enactive interaction and intuition. 

Moreover, this is one of the first instances that this reversal of order between enactive 

representation and definition happens in school mathematics. In this study, we examine how this 

affects the understanding of irrationality reached by the prospective secondary teachers. 

Note that this is in agreement with the conceptual framework that we described earlier, 

and that we adopted for the purpose of organizing this work, with the omission of the intuitive 

dimension of knowledge. Intuitions are not taught explicitly whilst objects and processes are, and 

thus, we believe, the absence of intuitions fiom the theories of concept formation. Intuitions 

come naturally as by-products, and as such they can give insights into a learner's concept image; 

therefore, we consider them in our analysis of data. At this point, however, we are concerned 

with the concept acquisition theory because, as we shall see, it seems to happen in very specific 

stages, to which we refer when interpreting participants' understanding of irrationality. 

In order to attain the reification of a concept there must first be a profound insight into 

the processes underlying mathematical concepts, perhaps even a certain degree of mastery in 

performing the processes, which form a basis for understanding the concepts (the precedence of 
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enactive interaction, in Tall's terms). Sfard (1 99 1) puts forth a strong case for the operational 

origins of mathematical concepts, supported by ontological and psychological considerations, as 

well as on the basis of empirical evidence. That the order of events in the process of learning is 

really such, she further presents this strong and convincing theoretical argument: 

If the structural approach is more abstract than the operational, if from the philosophical point of 

view numbers and hc t ions  are basically nothing but processes, if doing things is the only way to 

somehow "get in touch" with abstract constructs - if all this is true, then to expect that a person 

would arrive at a structural conception without previous operational understanding seems as 

unreasonable, as hoping that she or he would comprehend the two-dimensional scheme of a cube 

without being acquainted with its "real-life" model. (Sfard, p. 18) 

This model of learning is hierarchical in nature. It assumes three stages corresponding to 

three "degrees of structuralization". First there must be a process performed on already familiar 

objects. This is the interiorization phase. When a learner becomes fluent at performing this 

process so that he or she can carry it out through mental representations then we can say that the 

process has been interiorized. An interiorized process needs no longer to be carried out in order 

to be considered, analyzed and compared. Second is the phase of condensation which is a period 

of "squeezing" lengthy sequences of operations into more manageable units without feeling an 

urge to go into details. It manifests itself as a growing easiness to alternate between different 

representations of a concept. This phase lasts as long as a new entity remains tightly connected to 

a certain process. Only as the learner becomes capable of conceiving the notion as a fully- 

fledged object, we say that the concept has been reified. According to Sfard, interiorization and 

condensation are gradual, quantitative rather than qualitative changes, whereas reification is an 

instantaneous shift in which a process solidifies into object, into a static structure. The new entity 
- 
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is soon detached from the process, which produced it, and begins to draw its meaning from the 

fact of its being a member of a certain category. 

How and to what extent these ideas apply to understanding irrationality shall become 

much more apparent as we delve into the analysis of our data. In our study, we strive to 

determine the stage of the concept development that individual prospective teachers reached with 

respect to irrationality. As well, it should be pointed out that the implications for teaching 

practices that we propose in the last chapter rest on the hypothesis of operational origins of 

mathematical objects presented here. 

3.4 Cognitive obstacles 

Errors often do not stem only from ignorance, chance, or uncertainty. They could be the 

effect of a previous piece of knowledge which was interesting and successful, but which in a 

different, usually extended or higher-level mathematical context become false or simply 

unadapted. These kinds of errors are seen to be caused not by the lack of a piece of knowledge, 

but rather by the interference of an existing piece of knowledge or a poorly adapted piece of 

knowledge. This is the basis of a cognitive obstacle. Herscovics (1989) uses the term "cognitive 

obstacles" to refer to the obstacles encountered by the individual learner during the process of 

conceptualization. 

Following Bachelard, Sierpinska (1 994) focused her attention on the "epistemological 

obstacles." It is assumed that to learn is to overcome a difficulty. She proposes the historico- 

empirical approach to understanding in mathematics by which the study of contexts and mental 

frameworks in the historical development of knowledge can be used both in identifying today's 

students' &fficulties, and in finding ways of dealing with them. In this sense, epistemological 

obstacles originate in the history of the discipline; however, they may replicate in individual 
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learners as cognitive obstacles. There are similarities in the evolution of students' understandings 

and the historical understandings because of a certain mathematical and linguistic commonality 

in these developments. 

In this sense, some mathematical concepts are inherently difficult, and reaching a full 

understanding may be impeded y t i l  a radical reconceptualization has occurred. In her study, 

related to students' understanding of limits, Sierpinska identified epistemological obstacles 

related to infinity and real number. She reports that "students view the set of reals as dense but 

not necessarily continuous". The concept of real number as a measure does not exist in some 

students' intuitive models, and so the difference between 1 and 0.9 fails to be translated as zero, 

which is seen as "the obstacle of the lack of a uniform concept of real number" (Sierpinska, 

1987). The obstacles related to infinity are discussed later in this chapter. 

In addition to these, there are two other epistemological obstacles related to the concept 

of irrational numbers: incommensurability (discovered around 500 BC) and the 

nondenumerability of irrational numbers (discovered in 1874 by Cantor). Neither one of these 

notions was easily accepted, historically. For example, the discovery of incommensurability 

caused a paradigm shift so significant that we now have legends depicting the bewilderment of 

the ancient scientists over their realization that there exist incommensurable magnitudes. One 

legend has it that the Pythagorean philosopher Hippasus of Metaponturn was thrown overboard 

into the sea for his "heresies" when he demonstrated that not all lengths can be expressed as 

ratios of one another (Sfard, 1991). Another tale has it that Pythagoras had one hundred oxen 

slaughtered and roasted for a huge feast (Hoechsmann, 2003). Although incommensurability is 

at the heart of the notion of irrationality, it is outside of the scope of this study. On the other 

hand, issues related to the nondenumerability of real numbers are part of our study. We are 



interested in the beliefs and intuitions held by the prospective teachers with respect to the 

abundance of irrational numbers versus rational numbers. 

Depending on the origin of an obstacle, Brousseau (1997) differentiates between 

obstacles of epistemological origin and obstacles of didactical origin. According to Brousseau, 

obstacles of epistemological origin neither can nor should be escaped because of their formative 

role in the knowledge being sought. On the other hand, didactical obstacles depend only on a 

choice or a program within an educational system. Often they can be traced back to an aspect of 

teaching. 

To illustrate this, let us consider decimal numbers. Because of their utility and association 

with the metric system of measurement, decimal numbers are taught to everyone as soon as 

possible. In addition, they are related to technical operations with whole numbers. As a result, 

decimal numbers are seen as "whole numbers with a change of units" and therefore "natural" 

numbers with a decimal point. For example, 3.25 is 325 with one hundredth as the unit. 

Consequently, "all topologic relationships will be disturbed, and for a long time, and the child 

will not be able to find a decimal between 3.25 and 3.26, but on the other hand she will find a 

predecessor of 3.15, which is 3.14" (ibid, p. 92). This conception, supported by a mechanization 

by the student, will, right up to university level, be an obstacle to the proper understanding of 

real numbers. In this study, we investigated the role of epistemological and didactical obstacles 

in relation to the concept of irrationality. In what ways do these obstacles manifest as cognitive 

obstacles preventing individuals to acquire a uniform concept of real number? 

Lastly, relevant to our study, there is the notion of "intuitive obstacle" introduced by 

Fischbein (1987). We consider intuitions as developmental phenomena that depend on personal 

experience and social influences. It is often the case that intuitive ideas are limited compared to 

their formal counterparts. Being contradictory is part of their nature. They are ideas that seem to 
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be handy in some contexts (take the example of "division always makes smaller", or "a larger 

number has more factors"), but constitute an obstacle in others. The need for harmonizing 

intuition and mathematical notions constitutes a basic issue of education. Axioms, definitions 

and theorems are part of mathematics as much as its ideas and models. There is nothing more 

dangerous for mathematics learning than neglecting the deep discrepancies between spontaneous 

thinking, sometimes common sense, and mathematical thinking. 

It should be noted that in some cases the distinction between "epistemological obstacle" 

and "intuitive obstacle" is not clear across research literature. For example, cognitive obstacles 

related to incommensurability can be viewed as epistemological (Sierpinska) or as intuitive 

(Fischbein). Epistemological obstacles can be seen as a subset of intuitive obstacles. 

In this study, we examine to what degree the epistemological obstacles in the historical 

acceptance of the idea of irrational numbers are echoed as cognitive obstacles of individual 

learners. Using the notion of obstacle, we seek to identifjr the origins of conflicts and 

discrepancies in the prospective secondary mathematics teachers' understanding of irrational 

numbers. 



CHAPTER 4 

Didactical Phenomenology of Irrationality 

Didactical phenomenology is the term used by Freudenthal(1983) to capture the idea of 

describing a mathematical concept in its relation to the phenomena for which it was created and 

as it concerns the learning process. In other words, it is a content specific analysis dealing with 

the question of what is there to know or understand about a certain mathematical notion. In this 

chapter we discuss the didactical phenomenology of the concept of irrationality. Issues related to 

the conceptualization of irrationality are outlined: What is there to know? Where lie the dangers 

for conflict? Here we also declare the research focus of our study. 

In line with the conceptual framework discussed earlier, we investigated the participants' 

intuitive, formal, and algorithmic dimensions of knowledge with respect to: 

number sets 

definitions of irrational numbers 

representations of irrational numbers, 

existence, density and fitting of irrationals amongst the rationals, and the effects of 

operations between members of various number sets. 

In the case of irrational numbers it happens that the definition relies on the existence or 

on the non-existence of a certain, distinguishing representation. Until the exposure to a formal 

construction of irrational numbers using, for instance, Dedekind cuts, this distinguishing 

representational feature is used as a working definition of irrational numbers. That is to say, 

irrational numbers are those numbers that cannot be represented as ragios of integers. An 

equivalent definition of irrational numbers refers to infinite non-repeating decimal 

representations. This means that the issues relating to definitions and issues relating to 
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representations of irrational numbers have a significant overlap; therefore, it might seem at times 

that some part really belongs to a discussion related to representations, and yet it appears in the 

discussion related to definitions, and vice versa. 

We now turn to the aspects of the content knowledge of irrationality that are of our 

primary interest. Let us consider the question of what is there to know, or to understand, about 

irrational numbers. As well, here we foreshadow the sources of possible cognitive conflicts and 

identify the obstacles to learning the irrational number concept. We attend only to components, 

or aspects, of the mathematical content knowledge relevant to this study: 

1. Numbers and their class membership with specific reference to the place of irrational 

numbers within the set of real numbers, i.e. the set of irrationals as a complement of rationals 

in reals. 

2. The two definitions, or rather the descriptions, of irrational numbers as commonly used in 

school mathematics and the relationship between these two definitions: 

Nonexistence of a representation as a h  with a, b integers and b#O. 

Infinite non-repeating decimal representation of irrational numbers. 

3. The multiple representations of irrational numbers (decimal, as a number that cannot be 

expressed as a quotient of two integers, symbolic - for those that even have such 

representations, geometric - constructible lengths for those that can be constructed or as 

points on the number line in general). 

4. The existence and density of irrational numbers and how they fit among the rational numbers 

(i.e. denumerable vs. nondenumerable sets). Also, the effects of operations between members 
- 

of rational and irrational number sets. 

It should be noted that the knowledge of this content domain consists of much more than 

is listed above. For example, this study does not address the issue of incommensurability of 



irrational magnitudes, proofs of irrationality, different kinds of irrational numbers, rational 

approximations of irrational numbers via continued fractions, irrational numbers as limits of a 

sequence of rational approximations, and so on. As well, we do not explicitly investigate the role 

of the symbolic representation of (algebraic) irrational numbers such as roots of various kinds. 

Although certain aspects of understanding operations with irrational and real numbers are 

investigated, this is not central to our study. 

In summary, for the purpose of this thesis, we confine our analysis only to the issues 

mentioned in the above list. It should be noted that borders between these aspects of knowledge 

are not clear-cut. For example, definitions often play a significant role in deciding on how to 

classifl a number; further, definitions in the case of rational and irrational numbers depend on 

the existence or the nonexistence of certain kinds of representations of numbers. In the next 

sections we examine in greater detail what is involved in understanding the aspects of knowledge 

outlined above. 

4.1 Number sets 

In the Integrated Resource Package for Principles of Mathematics 10, Number Concepts 

strand, it is expected that students will "classifl numbers as natural, whole, integer, rational or 

irrational, and show that these number sets are 'nested' within the real number system" (BC 

Ministry of Education, 2002 p. 136). Further in this document, under suggested instructional 

strategies we read the following: 

(It is suggested that teachers) 

discuss the definitions of the various number systems; 

use a set of nested measuring cups with appropriate labels to illustrate how the 

number systems fit inside one another; 
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illustrate the anomaly of irrational numbers by slipping a piece of paper between the 

rational-number cup and the real-number cup; 

have students transfer these concepts to Venn diagrams in their notebooks. 

It seems that in school mathematics, not much attention is being paid to how these number sets 

came about historically; in particular, there seems to be no reference to the operational origins 

that necessitated formal construction of new kind of numbers. 

Historically, the notion of number developed through a lengthy cyclic process in which 

the same sequence of events could be observed again and again whenever a new kind of number 

was being born. First, there was the preconceptual stage, at which certain operations were 

performed on the already known numbers. This was followed by a long period of mainly 

operational approach during which a new kind of number began to emerge out of the familiar 

processes. For example, roots of negative numbers emerged during Cardano's prescriptions for 

solving cubic and quartic equations; however, they were regarded as nothing more than 

abbreviations for certain meaningless by-products. With time, as people became accustomed to 

these strange but usefbl kind of computation, the set of numbers had to be broadened again to 

include the number in question as a fully-fledged mathematical object, in this case the complex 

numbers. 

As discussed earlier, there is a kind of hierarchy, in which what is conceived purely 

operationally at one level should be conceived structurally at a higher level, both from a 

historical as well as psychological outlook (Sfard, 1991). This is to say that the natural flow of 

concept formation, both - historically and as it concerns individual learner, is from operational to 

structural. It should be pointed out that this is an assumption based on personal experience and 

on observations in our teaching practice. There are also other possibilities for how mathematical 

conceptions are formed. For example, a skilled teacher might use the driving force of "big 
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questions" to bring a new concept into being, or it could be done formally, by the force of a 

definition. 

Note that at this point in the school curriculum, motivated by the introduction of 

irrational numbers, students are expected to conceive the real number as new fully-fledged 

mathematical object in the hierarchical structure of number. In order to understand how the 

number sets relate to each other, one must rely on a rather structural notion of number. For 

example, the Venn diagram depicting the structure of the set of real numbers in its relation to 

other sets of numbers represents a rather sophisticated view of the concept of number. 

Regardless of their origins, numbers such as natural number, rational number, irrational number 

are conceived as objects of the same type - real number. 

In this study, we are interested in both, the prospective teachers' competence as well as 

their reasoning in the classification of numbers into various sets. We examined how our group of 

prospective secondary teachers compared to the prospective elementary teachers from Tirosh et 

al. (2003) study concerning their ability to identifl set membership of various numbers. We 

examined whether the fact that this topic appears in the secondary rather than elementary 

mathematics curriculum has any bearing upon prospective teachers' ability to identifl correctly 

the set membership of various numbers. 

4.2 Definitions 

We examined the role of the two competing definitions in an individual's 

conceptualization of irrationality. 
- 

There are two definitions of irrationals given at a school level: 

a) An irrational number is a number whose decimal part is not periodic and has an infinite 

number of digits. 
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b) An irrational number is a number that cannot be expressed as a quotient of two integers 

with a nonzero divisor. 

These two definitions, as opposed to the formal mathematical definition by means of 

Dedekind cuts, are merely the descriptions of, or the introduction to the concept of irrationality 

as given in high school textbooks guided by didactical considerations given the relative 

mathematical immaturity of the target student population (Arcavi, 1987). Although the motives 

behind the existence of these two definitions are considered to be primarily pedagogical, the fact 

is that these same two definitions are being used by students and by preservice teachers alike in 

order to classify numbers as either rational or irrational. 

It is worthwhile to note that the commonly used student textbooks, such as Mathpower 

10, are devoid of any attempt to make the connection between the two definitions explicit. In 

Chapter 1.1 called "The Real Number System" students are given the following definitions 

without any explanation of how fractions give rise to repeating decimal expansions: 

An irrational number is a number that cannot be expressed as a terminating or repeating decimal. 

Irrational numbers are non-terminating, non-repeating decimals. 

They cannot be expressed in the form a / b, where a and b are integers and b does not equal 0. The 

set of irrational numbers is named using the symbol Q . (Mathpower 10, Western edition, p. 6) 

After this, the textbook gives six examples of irrational numbers. Three of them are both 

in symbolic and decimal form with nine digits after the decimal point followed by three dots 

(these examples are n, &- J? ), and the other three examples are transcendental numbers 

intended to show that non-repeating yet patterned decimals are also irrational. These are the 

examples provided in the same textbook (spacing is as it appears in the original text): 



1.121 122 111 222 111 122221 ... 

- 0.100 200 300 400 500 ... 

It seems that the (mis)treatment of this mathematical topic has become chronic - it is just 

as bad today as it was nearly a century ago. Klein (1932) begins his chapter on irrational 

numbers with this dismal remark, "Let us not spend any time in discussing how this field is 

usually treated in the schools, for there one does not get much beyond a few examples" (Klein, 

The concept of irrational numbers is inherently difficult - historically, these numbers 

have caused ontological problems and understanding them involves overcoming epistemological 

obstacles. We examined whether these difficulties compound because of the way irrational 

numbers are commonly introduced in school mathematics, that is, using two characterizations or 

representational features as definitions for irrational numbers without an explicit connection 

made between them. If this were the case, then understanding irrational numbers would require 

overcoming both, epistemological and didactical obstacles. In this study, we investigated what 

effect does having the two (unrelated) definitions have on participants' understanding of 

irrational numbers. 

The missing link: Why are the two "defirtitions" equivalent? 

Put bluntly, the reason that we can use the decimal characterization as a "definition" is 

that a decimal number represents a rational number if and only if it terminates or repeats. 

Ironically, this characterization has nothing to do with the original motivation for distinguishing 

between the rational and irrational numbers. 

Any fraction whose denominator is not a factor - of a power of ten - and only the products 

of powers of 2 and 5 are - cannot be written as a finite decimal. Consequently, a great number of 
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fractions that students see in school mathematics are those that have infinite decimal expansions. 

Using the decimal representation it might seem that it would be difficult to distinguish such 

rational numbers from irrational numbers, except for one interesting thing about infinite decimals 

that come fiom fractions - they repeat. It is possible to see, by long division, that the decimal 

expansion of any fraction a/b with a, b integers and b#O, necessarily repeats. For a more unified 

perspective, we can say that the "terminating decimals" are also infinite repeating (having bi- 

unique infinite expansions). For example, the terminating decimal 2.3 can be seen as an infinite 

repeating decimal either as 2.2999.. . or as 2.3000.. . . The possible remainders on dividing a by b 

can only be 0, 1,2, . . . , (b-1), so with only b possible choices for remainder, the calculations in 

the long division must eventually start repeating. The claim that every fraction has an infinite 

repeating decimal expansion can be shown using several examples to clarifl why this is so. 

It should be within the grasp of a grade 9 student to understand that when we try to 

convert fractions whose denominators are not powers of 10 into decimals, what stops us from 

ever finishing is that at some point we end up with a remainder that is the same as one that we 

got before, so we end up getting the same sequence of digits over and over again. The number of 

digits in the period will therefore be no greater than 1 less than the denominator. So for example 

it could take 16 places for the decimal expansion of 1/17 to repeat, but no more than that. This is 

because when dividing out 111 7 there are only 16 possible remainders (0 does not count because 

if the remainder where 0 it would be a finite decimal). Therefore, after 16 places all the possible 

remainders will be used up, so the next remainder will have to be one of the previous ones and 

fiom there on the same things will happen over and over again in the long division creating a 

repeating sequence of digits. Some algorithmic experience is needed for this idea to settle in 

students' minds. 
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The converse, that any repeating decimal is a fraction, is much more subtle and difficult 

to grasp. The general proof of this notion requires the summing of an infinite decreasing 

geometric progression. Although a formula for the sum of such progression is given in high 

school, the derivation of such result requires the use of the limit process (usually done in first 

year university course). 

In high school, and even as early as in Grade 7 (in British Columbia, for example) a type 

of symbolic "juggling" where operations are conducted on infinite decimal expansions is 

presented to students to convince them of the "iff' relationship. Here is a typical example: 

Problem: Convert 0.121212 12 ... to a fraction. 

Solution: Let x = 0.12121212 ..., then lOOx = 12.121212 ...., so 100x-x=12. But 100x-x is 

also 99x, so 99x=l2. Dividing both sides by 99, we get x=12/99=4/33. 

Although resourceful, this juggling is a bit contrived and can possibly leave the student 

with an impression that there might exist another trick that will turn a non-repeating decimal into 

a fraction. Compounding this conflict are the fractions which can be "seen to have no repeating 

patterny', such as 11257, when displayed on a calculator. Furthermore, there remains the danger of 

conflict between the theoretical requirement for infinite decimals and the practical experience 

that finite decimals are both convenient and sufficient. Specifically, we examined to what degree 

the availability of this juggling affected the understanding of irrationality. In other words, we 

investigated in what ways does the absence of the link which renders the two definitions 

equivalent impede the prospective teachers' overall understanding of irrationality. 



4.3 Representations 

Specifically, we focus here on how irrational numbers can be (or cannot be) represented 

and how different representations influence participants' responses with respect to irrationality. 

While the research on representations in mathematics and their role in mathematical learning is 

extensive (Cuoco, 200 1 ; Goldin & Janvier, 1998, to name just a few collections), and research on 

irrational numbers is rather slim, there has been no study that investigates understanding of 

irrational numbers from the perspective of representations. 

As a theoretical perspective we use the distinction between transparent and opaque 

representations, introduced by Lesh, Behr and Post (1 987). According to these researchers, a 

transparent representation has no more and no less meaning than the represented idea(s) or 

structure(s). An opaque representation emphasizes some aspects of the ideas or structures and de- 

emphasizes others. Borrowing Lesh's et. al. terminology in drawing the distinction between 

transparent and opaque representations, Zazkis and Gadowsky (2001) focused on representations 

of numbers introducing the notion of relative transparency and opaqueness. Namely, they 

suggested that all representations of numbers are opaque in the sense that they always hide some 

of the features of a number, although they might reveal other, with respect to which they would 

be "transparent". For example, representing the number 784 as 2g2 emphasizes that this is a 

perfect square, but de-emphasizes the divisibility of this number by 98. Representing the same 

number as 13 x 60 + 4 makes it transparent that the remainder of 784 in division by 13 is 4, but 

de-emphasizes its property of being a perfect square. In general, we say that a representation is 

transparent with respect to a certain property, if the property can be "seen" or derived from 
- 

considering the given representation. 

Applying the notions of opaqueness and transparency we suggest that infinite non- 

periodic decimal representation (such as 0.0 100 1000 10. . . , for instance) is a transparent 



representation of an irrational number (that is, irrationality can be derived from this 

representation), while representation as a common fraction is a transparent representation sf  a 

rational number (that is, rationality is embedded in the representation). 

In this study we examined how the availability of certain representations influenced participants' 

decisions with respect to irrationality. 

Infinite non-repeating decimal representation of irrational numbers: Utilized to define, 

identifv, and represent irrationalitv 

Students are told that irrational numbers have infinte non-repeating decimal 

representation. But how can the learner know that the expansion for f i  does not start repeating 

after, say, a thousand decimal places? The idea of infinity, in contrast with "very large", is not 

within our primary intuition. Again, we come back to the same missing link that equates the two 

definitions discussed earlier. In other words, in order to know that the decimals will not start 

repeating after any finite period, no matter how large, one must know three things. First, one 

must know that f i  cannot be expressed as a ratio of two integers (say by faith or by using a 

classical proof of irrationality of fi). Second, one must know that every repeating decimal 

number can be expressed as a ratio of two integers. Third, one must know that f i  cannot be 

both rational and irrational (the two sets are mutually exclusive). If one of the pieces is missing, 

there is leap of faith. 

On a related matter, every high school student claims to know that 7c is irrational. It is 

clear that such claim can only rest on pure faith, as the knowledge required to show that .n is 

irrational exceeds most third year university students'. 

For reader's amusement we present the corresponding prescribed learning outcome 

(PLO) from the BC Grade 9 curriculum: Students are required to "describe, orally and in writing, 



whether or not a number is rational" (p. 44). Next, it is says: "The ratio of the circumference to 

the diameter of any circle is n. Explain whether or not n is a rational number" (p. F-41). This 

shows that what is to be considered an acceptable explanation to satisfl this curricular 

requirement can be no other than examining the digits of n as presented on a calculator upon 

pressing the PI button and then concluding that it must be an irrational number because the digits 

do not exhibit any repeating pattern. If this kind of argument for determining irrationality is 

acceptable in case of n, then perhaps it is also acceptable other cases, such as 1/17. Clearly, 

promoting this kind of argument as a legitimate explanation for the irrationality of n is likely to 

induce conflicts in subsequent learning. 

From the perspective of opaqueness and transparency applied to the decimal 

representation as displayed on a calculator screen, it is obvious that all displays of irrational 

numbers are opaque with respect to irrationality and that the majority of displays of rational 

numbers are opaque with respect to rationality. Note that, on the calculator, the only transparent 

representations are those of "short" terminating rational numbers; that is, those that use up fewer 

digits than the calculator display allows. 

Even those decimal numbers that can be seen as repeating are not necessarily rational. To 

illustrate this, we can create an example of irrational numbers that, when entered into the 

calculator can be seen as "infinite repeating" and therefore indeed seem rational. 

Example, using an 8-digit calculator: 

Consider the following number, m: 

m = J ~ + ~ + ~ 9 8 9 , 0 1 1  - 

Entering it in the calculator, we end up with 0.3333333 on the display, which could be 

interpreted as a demonstration that m is rational. However, this is false because each one of the 
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three roots above is irrational (both 91, and 989,011 are prime, and so their square roots are 

irrational; also 4- = l000&& is irrational; none of the factors combine to form a 

perfect square, and so m is irrational). The same calculation performed on a 10-digit calculator, 

yields 0.33333333 1, which at least casts some doubt. Therefore, using the calculator display to 

decide on anything is open to errors. The problem is that this method "works" with most if not 

all of the school examples. 

So what use is the decimal characterization in deciding whether or not a number is 

irrational? The point is, not much, really. Any time we need to perform a computation with a 

calculator in order to get a number into decimal form, it is of no use, because when the maximum 

possible digits are displayed, we cannot possibly tell from a calculator whether a decimal repeats 

or even whether it terminates. It might do either way beyond the number of places that the 

calculator displays. Remember, a number like 1/17 could take as many as 16 places before it 

repeats. The only real use for the decimal characterization of rational and irrational numbers is 

for determining if a number that is already in decimal form is a rational number, and even then 

some assumptions must be made. For example, the number 0.10 1 10 1 1 10 1 1 1 10 1 . . . , assuming the 

expansion is infinite and the number of ones between the single zeros successively increases in 

the same manner, can be identified as irrational as this particular number's decimal 

representation is transparent with respect to irrationality. Likewise, 0.10 10 10 10 1 . . . , and 

assuming the expansion is infinite repeating, can be identified as rational since its decimal 

representation is transparent with respect to rationality. It follows that the notion of "infinite non- 

repeating decimal" representation is useful only fpr the case of identifying those rare patterned 

transcendental numbers. If this is all that is gained by using such characterization of irrational 

number, the question is: "Is it worth it?" A natural side effect, and a realistic danger of 
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introducing this notion is that many people might revert to it as their only working representation 

for deciding whether or not a number is rational or irrational. 

Nonexistence of a representation as a/b with a, b inteners and bfO: Utilized to define, identifv, 

represent, and prove irrationalifv 

Representation that characterizes rational number, becomes, as negation, a definition for 

irrational number. This is possible to do because the two sets, rational and irrational, are 

exclusive of each other and at the same time the two sets comprise all of the set of real numbers. 

Within the set of real numbers there are no gaps and no overlaps between the two sets. However, 

saying what something is not is not easily accepted as a definition for what something is. 

Furthermore, to show that a given number is irrational a proof is required - a proof showing that 

the number cannot be represented as ah with a, b integers and b#O. In most cases the proof is 

indirect - a proof by contradiction. Although direct proofs exist, they are not well known, and 

they do not appear in standard textbooks. 

Contradiction proofs cause problems of acceptance in practice. In the classical proof by 

contradiction (such as the one given in the standard Addison Wesley Mathematics 10 textbook to 

prove the irrationality of a) students are required to suppose something is true only to find that 

such supposition leads to contradiction, and to then conclude on that basis that what was 

originally supposed to be true must have been false. 

Here is the proof that f i  is irrational as presented in the Addison-Wesley Mathematics 

10 textbook (p. 97). 

Step 1 

Assume that is a rational number. 



Step 2 

Square each side to obtain: 

(,El2 = (+12 

2 mz 2 2 x n  =?xn n 

2=mZ 
n 

Multiply each I I side bv n 2 .  I 

Step 3 

Since the left side of this equation is even, the right side is even. Hence, n must be an even 

number. Represent this even number by 2p. Substitute 2p for m: 

Step 4 

Since the right side of this equation is even, the left side is even. Hence, n must be an even 

number. That is, both m and n are even. This means that the fraction + is not in lowest terms, 

although we assumed in Step 1 that it is in lowest terms. This contradicts the assumption in Step 

1 that & can be written as a fraction in lowest terms. 

Step 5 

The assumption in Step 1 that f i  is a rational number is incorrect. Hence, & is not a rational 

number. 

Learners &en feel a sense of emptiness and lack of explanation as to why & is not 

rational. Part of the problem may be that the contradiction does not arise by contradicting the 

simple statement " & is rational" but rather by contradicting a more sophisticated one, " & 



rational in lowest terms". In the attempt to make this proof as direct as possible, and thus make it 

more accessible to students, in his study, Tall (1979) proposed an alternative generic approach 

that rests upon the Fundamental Theorem of Arithmetic. 

We will show that if we start with any rational plq and square it, then the resulting square cannot 

be 2. On squaring an integer n, the number of times any prime factor appears in the factorization 

of n is doubled in the factorization of n2. In the factorization p2/q2 we factorize the numerator p2 

and the denominator q2, canceling common factors where possible. Then each factor either cancels 

exactly or we are left with an even number of appearances of that factor in the numerator or the 

denominator. The fkaction p2/q2 cannot be simplified to give 211 because the latter has an odd 

number of 2s in the numerator. So the square of a rational plq is never equal to 2. (Tall, 1979, 

p. 206) 

Participants of the study (n=70, students entering university from high school) were 

presented with two proofs, the classical one and the one shown above. Approximately one half of 

the participants received the two versions of proof for 2, as shown above, and the other half 

received the two proofs where 2 was replaced with 518. They were asked if they understood 

either proof or were confused by either proof on the first read through. They were then asked to 

keep the questionnaires for a few days to see if their attitudes changed and to make a record in 

case they did. The conclusion was that the alternative proof turned out to be considerably more 

generalizable than the standard one. The effect on understanding was significantly higher for 

those students who have seen neither type of proof before. The standard contradiction proof, 

though mathematically elegant, was found to "lack explanatory power and generalize with 

difficulty - because of linguistic considerations" (Tall, 1979, p. 207). 

On a related note, Sierpinska points out that understanding a theorem, such as & is an 

irrational number, on the basis of acceptance of the logical soundness of its proof is not the same 

as understanding the proof and its 'reasons'. The proof does not explain why the fact is so 
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significant - it does not show how incommensurability is related to irrationality nor does it tell us 

why the decimal expansion of should be infinite and non-periodical. (Sierpinska, 199 1, p. 

77). Understandably so, school mathematics does not go beyond the proof of irrationality of & , 

and possibly & . 

Geometric representation: (Real) number conceived as a point on a (real) number line 

A real number can be represented by point on a line. Visually, there is no distinction 

between a rational number line and a real number line. In a conventional size drawing, it is 

impossible to distinguish between the point marking & and the one specifying 1.414. However, 

not only are they different, but one is irrational while the other is rational, a vital distinction in 

pure mathematics. 

With the introduction of irrational numbers the learner must not only reconstruct the 

concept of number to include such entities which cannot be used for counting but also his or her 

conception of the number line must conform to this new evidence to include many more points. 

Both, the concept of irrational numbers and the concept of the real number line build on formal 

definition and deduction rather than on enactive interaction and visual representation. As 

discussed earlier, the real number line is defined as a line such that all real numbers receive a 

one-one correspondence with points. In that sense it is an "artificial" construct decreed to exist. 

However, its existence becomes very real, and the need to formulate it can be appreciated, when 

one realizes that many curves (such as a circle with radius & , for example) would cease to exist 

without the support of the real number system. Quite strikingly, if coordinate axes contained 

rational numbers only, the graph of x2 + y2 = 3 would disappear, as there is not a single point 

with a rational ordered pair anywhere on this circle. An understanding of this need for continuity 



of real numbers, and its non-obviousness, comes together with an awareness of the 

incompleteness of the rational number domain. 

Some suggestions for instructional practices regarding the geometric representation of 

real numbers are given in the Integrated Resource Package for Principles of Mathematics 10 (BC 

Ministry of Education). It is suggested that teachers: 

Draw a number line on the board and have students place rational numbers in appropriate places, 

then ask them to place irrational numbers on the line. Point out that a decimal approximation of 

the number is necessary to allow for the proper placement and that more decimal places lead to 

greater accuracy. (p. 136) 

Note that the second suggestion is false - it applies only to higher roots and 

transcendental numbers. There are irrational numbers that can be constructed geometrically with 

compass and straightedge, such as square roots and other irrationalities that can be obtained by 

repeated extraction of square root. Moreover, those are precisely the irrational numbers most 

often encountered in school mathematics. 

In the analysis of participants' understanding of irrationality, close attention is being 

given to the degree and nature of the connections between the three forms of representations 

living in the participants' concept image of irrational number. This is natural, considering that "a 

mathematical concept is learned and can be applied to the extent that a variety of appropriate 

representations have been developed together with functioning relationships among them" 

(Goldin and Shteingold, p. 6). For example, Lamon (2001), who has extensively researched how 

students come to understand rational numbers, notes that "basing instruction on a single 

interpretation and selectively introducing only some of its representations in instruction can leave 

the student with an inadequate foundation to suppart her or his understanding of the field of 
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rational number" (p. 150). It has been shown that the different representations and interpretations 

of fractions contribute to a robust understanding of a rational number. 

4.4 Relations of two infinite sets: density, fitting, richness, and operations 

The idea of irrational number pushes the limits of students' imagination. When dealing 

with questions such as "Which numbers do we have more of, rational or irrational?'or "Is it 

possible to find a rational number between any two irrational numbers?'we cannot avoid 

thinking about infinity. Our intuitions and beliefs about infinity are teased out, and that may or 

may not be at variance with the formal image. Difficulties in the understanding of irrationality 

may be revealed through inconsistencies between intuitive and formal dimensions of knowledge. 

Of course, there is a possibility that one may have been exposed to the formal construction of the 

concept of infinity in terms of, say, cardinal sets, and that this new evidence forced one to 

reconstruct one's knowledge in a way that does not involve conflicts. However, there is also a 

possibility that despite of being exposed to it, one has not absorbed the meaning of it and has not 

successfully adapted one's personal concept image, or even that one has not been exposed to 

these notions at all. We assumed that not many prospective teachers would have the formal t - . - 

arguments related to the richness of the two number sets, rational and irrational, in their active 

repertoire of knowledge. In this sense, we were interested to see whether prospective teachers are 

capable of supporting well-founded intuitions about these questions independently (i.e., without 

an external intervention) based solely on their comprehensive and solid formal knowledge about 

numbers. 

Research shows that informal images often persist long after formal ideas are introduced 

(Fischbein, 1979). Individuals' conceptions may involve essentially contradictory features - the 

intuitive obstacles, discussed earlier. There are two intuitive obstacles described in literature that 



are of our concern here. First, the informal image that 'the whole is greater than the part' 

becomes an intuitive obstacle when the concept of infinity is to be conceived in terms of cardinal 

infinity. This particular intuitive obstacle has been extensively researched. For instance, Tall 

speaks about this is terms of natural infinities - these are personal conceptions and may contain 

built-in contradictions, and formal infinities. The didactics for overcoming it have been 

suggested, primarily by varying the representational mode. The number of correct responses 

increased significantly when the mode of representation used in the question was such that it 

explicitly exhibited the one-one correspondence (Tsamir & Tirosh, 1999). 

The second obstacle relates to infinite decimal expansions. It has been documented that 
* 

learners often see the infinite decimal expansion as a continuous process rather than as an object 

(Sierpinska, 1991). This is explained in terms ofpotential and actual infinity and it seems to 

closely relate to operational vs. structural conception of decimal number. Specifically, until the 

concept of decimal number has been reified it remains tied to the process of division, which in 

the case of recurring decimals never reaches completion. The number is still at the stage where it 

is seen as being constructed and not as already constructed, as a sequence rather than its limit. 

The difficulty in accepting that in the same interval there are infinitely many rational and 

infinitely many irrational points, is of our interest here. We examined the participants' capability 

to produce adequate intuitive models for representing irrational number concepts. By "adequate" 

we mean such that will not create inconsistencies with the other two knowledge dimensions. As 

well, here we situate participants' difficulties in the context of the system of rational numbers 

and in the system of real numbers. 

We investigated prospective teachers' beliefs and intuitions regarding three distinct 

threads. First, we explored the beliefs about the relative "sizes" of the two infinite sets. What 

kind of mental images are used to tackle this question? Second, we looked at participants' 
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intuitions about how the rational and irrational numbers fit together (i.e. the idea of continuity of 

the set of reals achieved by the "completeness" axiom). How do they reconcile the fact that 

rational numbers are everywhere dense, that is, between any two rationals, no matter how close 

they are, there are infinitely many rational numbers, and yet there is still "room" to fit the 

irrational numbers amongst them. Thirdly, we investigated how preservice teachers respond to 

questions about the effects of operations between various types of numbers (for example, when 

is there a closure). 

In the following chapter, we turn to the specific tasks that were designed in order to 

investigate the issues discussed in this chapter. 



CHAPTER 5 

Methodology 

5.1 Participants and Setting 

Participants of this study were 46 prospective secondary mathematics teachers (PSTs), 16 

male and 30 female, in their final term of studies before certification. Approximately one third of 

them were mathematics majors, while the rest held a major in science. The data consists of two 

sources: a written questionnaire (included in Appendix A) completed by all 46 participants and a 

semi-structured clinical interview conducted with approximately one third of this group (16 of 

the participants). 

The questionnaire was administered during the third session of the secondary 

mathematics methods course (EDUC 41 5, Designs for Learning Secondary Mathematics) at 

Simon Fraser University (SFU), which was held in the summer of 2002. The duration of this 

course was 13 weeks, with meetings once a week for four hours. The questionnaire was 

administered in the second half of the session, and prospective teachers were fiee to leave when 

they were finished. Therefore, there was no time limit on the written part. 

It should be mentioned that at the time of administering the questionnaire prospective 

teachers were not told that they were asked to do this for research purposes. Instead, they were 

asked to fill it out to the best of their knowledge, as this information would help the instructors 

with planning for the course content. They were also asked to put their name on the paper. At the 

time of writing, participants believed this was a test of their (general) knowledge of mathematics 

and, although the atmosphere in the room could be described as one filled with anxiety, there 

was a keen interest to do one's best and to take one's time. Most of the prospective teachers took 
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about 60 to 75 minutes to complete the questionnaire, however some went for as long as 90 

minutes. 

The following week, at the next meeting, the purpose of the questionnaire was revealed to 

the participants. We thanked them for their participation, and told them that there is a threefold 

benefit that could be gained from the experience. First, they gained an insight into the feelings of 

apprehension that students often feel in a test situation. The anxieties compound in the case of 

unannounced tests such as pop quizzes and in cases where the content tested does not exactly 

match what has just been taught, but rather assumes some previous knowledge, which is similar 

to what they had experienced. There was a lively discussion about whether it was reasonable to 

expect that a prospective secondary mathematics teacher had his or her repertoire of knowledge 

on this topic available upon such sudden request. A general conclusion was that if such 

knowledge could be accessed and could be therefore seen as portable (over time) and 

transferable (over situations) then this was a good measure that this topic had been understood at 

the time of its study. Second, there is very little research related to this topic, and through their 

participation in this study we would gain a better understanding of how the teaching of 

irrationality could be improved, what the misconceptions related to this topic are, and so on. 

These insights would benefit prospective teachers in subsequent cohorts. Throughout the course, 

the course instructor made references to research findings, either verbally or by assigning 

readings (such as Susan Lamon's research on rational numbers), and so this group of prospective 

teachers has learned to appreciate having access to this knowledge. Thirdly, there was a lesson 

towards the end of the course where the preliminary results of this research were shared with - this 

group. They were the first to find out about the issues related to understanding this mathematical 

domain as revealed through the data from the questionnaire. Therefore, if anyone felt inadequate 



5 8 

at the time of writing it, care was taken that their understanding had been "straighten out," and 

this of course, would be to the benefit of their future students. 

After this discussion the participants were given an option to either decline or accept their 

participation in this study. If they were to decline their paper would be returned to them at this 

point. If they were to accept they might be approached to participate in the second phase of the 

data collection, clinical interviews, which were to be conducted in order to probe further ideas 

and beliefs that participants expressed in the written response. Not a single participant asked to 

be taken out of the study. 

During the next couple of weeks the written data was examined for preliminary results, 

and 16 prospective teachers were selected for the interview. Item 6 of the written questionnaire 

(see Appendix A) was used to gauge the preliminary results, because it involves recognition and 

classification of numbers across a wide range of examples, and could thus be quantified to give a 

good overview of general performance. All the responses on this item were tabulated and 

quantified to give a sense of individual as well as overall performance of the group (results 

appear in Chapter 6.1). 

The guiding principle for selecting the interviewees was fair representation. We wished 

to probe the thinking at all levels, according to the distribution of the results. In accord with this 

design, the results were such that three interviewees were those that would be considered to have 

a good understanding of the concepts, nine would be considered to have a fair understanding, 

and four would be considered to have a poor understanding. In other words, based on the results 

on Item 6, and in keeping with our strategy to have a fair representation of the whole group, 
- 

these turned out to be the requirements guiding our selection of candidates for the clinical 

interview (this point is brought up again in greater detail in Section 6.1.3). 
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Between the 7& and 1 0 ~  week that the course was in session all sixteen interviews were 

conducted, by an appointment outside of class time, with each interview lasting anywhere 

between 45 to 60 minutes. The interview was semi-structured in the sense that the ideas explored 

very much depended on the participant's responses to the written part. All the interviews were 

audio taped and later transcribed for the purpose of analysis. 

In the 12& week the preliminary results were shared with the class. Part of the lesson 

addressed the historical development of the concept of irrationality. Next, misconceptions that 

this group generated were presented for discussion. The majority of the lesson was dedicated to 

activities that would help people better understand the concept of irrational numbers, especially 

the link between the two definitions and the idea of incommensurability. 

5.2 Task Analysis 

We now turn to particular tasks fiom the written questionnaire. The entire questionnaire 

appears in Appendix A. Here we discuss only those items that are relevant to the scope of this 

work as outlined in the previous chapter. We consider them in the order of issues set out there 

with the exception of "definitions" and "representations" which have been reversed here 

(because the methodology for exploring the issues related to definitions references the items 

related to representations). We discuss the rationale for inclusion of each item, that is, what 

insights we hoped to gain fiom the task and how the task relates to the issues identified in the 

content analysis section described in Chapter 4. As well, here we present what would be 

considered an acceptable and/or ideal response. 
- 



5.2.1 Set membership identification 

In order to obtain a general assessment of the participants' formal knowledge of number 

sets and their relationships, and of their ability to use this knowledge to classify various numbers 

across sets, we designed Item 6. As mentioned earlier, with its broad scope of 14 sub-items, this 

item was used to gauge the performance of the group as well as the performance of individual 

participants in relation to the group. In the written part, we were interested primarily in their 

competence in classimng a given number into respective sets. During the interviews we also 

examined the reasons for their decisions. This item helped us identify which candidates would be 

the most suitable to be invited for the clinical interview so that they would be fairly 

representative of the group yet revealing of the variety of ways people think about irrational 

numbers. Here is the question as it appeared in the questionnaire that was administered: 

Item 6. For every number listed in the table below check all the attributes that apply. 

For example, in the case of "cat" it would look like this. 

Cat 

0.05755755575.. . 

513 1 

-4% 

0.9999999.. . 
The solution of the 
equation 2" = 3 

Animal 

Natural 
number 

Mammal Reptile 

Integer 

- 

Rational 
number 

Irrational 
number 

Real 
number 



The solution of the 
equation x = cos? 
The solution of the 
equation x = sin60•‹ 
The solution of the 
equation 3x + 1 = 0 
The area of the unit 
circle 

42m 
m 
3& 

f i  
0.012222.. . 

Correct responses are represented with shaded fields. 

Natural 
number 

Irrational 
number 

Integer Real 
number 

Rational 
number 



The difficulty in accepting that 0.9999999.. . (where the digit 9 repeats infinitely) is 1 has 

been extensively researched and documented in the education research literature (Sierpinska, 

1987; Tall, 1978; Marnona-Downs, 2001). The reason we included this number in our list was to 

identifl those participants that have had a formal exposure to this result or have thought about it 

extensively and have come to understand the bi-unique decimal representation of terminating 

decimal numbers. Based on this research, we assumed that a correct set membership 

identification of this number would likely be an indication of a profound understanding of real 

number and therefore we included it in our list. 

Upon later consideration of the results reported by several researchers (Arcavi, 

Bruckheimer & Ben-Zvi, 1987; Tirosh, Fischbein, Graeber & Wilson, 2003), and especially after 

clinical interviews, we regretted that 2217, and also 0 were not included in our list of numbers to 

be classified. As already mentioned in the section on literature review, there is a persisting 

confusion between n: and this particular approximation of z, even after instructional intervention 

(Arcavi et al., 1987). 

To get a general overview of how prospective secondary teachers think about the 

structure of the set of real numbers, we examined: 

what properties of the number guide their decision about whether a number is rational 

or irrational, 

whether or not they see every number in the list as real number, 
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whether or not they see the set of rational numbers as a complement to the set of 

irrational numbers within the set of real numbers (i.e. the fact that it is impossible for 

a number to be both rational and irrational). 

5.2.2 Representations 

To investigate understanding of irrational numbers from the perspective of representations, we 

designed three questions, each tackling one of the representational features of irrationals: 

Irrational numbers are those that have infinite non-repeating decimal representations. 

Irrational numbers are those that cannot be represented as ratios of integers. 

(Constructible) irrational numbers can be (easily) represented geometrically as points on the 

number line. 

In terms of preference and comfort, when thinking about irrational numbers, people seem 

to fall into three categories: those who rely on the decimal representation, those who rely on the 

nonexistence of a representation as a quotient of two integers, and those who use both with equal 

facility. We refer to them as decimal, fractional and balanced dispositions. Items 1 and 2 (as well 

as some numbers from the list in Item 6) tend to reveal a person's disposition. In Item 1, we 

examined how the availability of infinite non-repeating representation influenced participants' 

decisions with respect to irrationality. 
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From the decimal disposition, irrationality of this number is transparent. Suppose that for 

whatever reason the definition of irrational number as infinite non-repeating decimal is not 

available to the individual. Then she  may start from considering what fraction would yield this 

decimal expansion (fi-actional disposition). This is a possible line of thinking. Assume such 

fraction exists, call it d n ,  where m and n are whole numbers and n is not 0. Upon dividing m by 

n we eventually start encountering at most (n-1) different remainders, and so the decimal 

expansion of m/n is a repeating decimal (terminating decimal can also be seen as repeating, as 

discussed earlier). Therefore, there will be a difference between this decimal number and the one 

given above, which means they are not equal. We run into a contradiction, and so the given 

number cannot be represented as a ratio of integers and is thus irrational. Whether considering it 

from a decimal or fractional disposition, the irrationality of 0.12 122 1222.. . is transparent, as it 

can be derived from considering the given representation in both cases. However, in this case we 

note that irrationality is more directly and easily seen from a decimal disposition. 

In Item 2, we examined how the availability of a representation as a ratio of two integers 

(with a non-zero divisor) influenced participants' decisions with respect to irrationality. 

division, calculator display shows 0.6385542 1687. 

Is M rational or irrational? Explain. 

We agree with the criticism that introducing a calculator display in this question is 

intentionally misleading. However, it was our goal to check to what degree the participants will 

be misled. Note that the numbers are carefully chosen so that the repeating is "opaque" on a 
- 

calculator display. Here the rationality is embedded in the representation - the number is a ratio 



of two integers. Using the decimal characterization to decide whether 53/83 is rational or 

irrational is totally missing the point since 53/83 is rational, because it is a ratio of integers, 

which is the original meaning of rational number. An irrational fraction is a contradiction in 

terms. It would be like saying that a fraction was not a fraction. Of course, if 53/83 were 

expanded enough, one would see that its digits repeat (in fact, there are 41 digits in the repeating 

period). But there is no reason to do that, because for one it is known that this is true for all 

fractions and for another if it were not true for all fractions that would not be a proper 

characterization of rational. The whole point of that characterization was for it to be a way to tell 

if a decimal representation came from a fraction in the first place. A strictly decimal disposition 

(i.e., a complete absence of considering a fraction as an object) can be identified in learners as 

they typically do not take the advantage of the transparency of representation with respect to 

rationality, such as in the above case. 

Furthermore, from the way one thinks about this problem, it is possible to discern the 

developmental stage of the concept of rational number. Consider the notion of decimal number 

as an object which solidified into a static structure as a result of the process of division of two 

whole numbers. In the case where one still needs to perform the division in order to decide 

whether or not the decimals will start repeating, we see the concept in the interiorization phase. If 

the process of division of two whole numbers had been completely interiorized it would no 

longer need to be carried out in order for the results of this process to be considered, analyzed 

and compared. In the condensation phase we would see a growing easiness to alternate between 

different representations of a concept (decimal number with infinite repeating digits or ratio of 

two whole numbers), certainly the "missing link" would be non-existent. The reified stage would 

manifest as the attainment of proceptual thinking about rational numbers - 53/83 would be seen 



as object drawing its meaning from the fact of its being a member of a certain category, a 

rational number, detached from the process of division, regardless of the representational mode. 

Item 5 was designed in order to investigate understanding of the geometric representation 

of an irrational number. In particular, we were interested in what means the participants would 

use in order to locate & on the number line precisely. It is said that to every real number there 

corresponds exactly one point on the real number line. One may find this difficult to believe if 

one has never seen an irrational point located on the number line, especially considering the fact 

that the number line is everywhere dense with rational numbers. 

Item 5: Show how you would find the exact location of & on the number line. 

The number line in this question is intentionally set in the Cartesian plane with a visible 

grid to simplify the straightedge and compass construction (i.e., there is no need to draw a 

perpendicular line at 2). It is intended to aid in the invoking of the Pythagorean Theorem in the 

efforts to construct the required length. The expected response is shown in the figure below. 



Figure 1: Geometric construction of & 

We were interested to see whether participants will use this conventional or a similar approach or 

whether they will resort to thinking in terms of decimal expansions, such as advised in the 

Integrated Resource Package for Principles of Mathematics 10 (BC Ministry of Education), and 

discussed earlier in section 4.3. 

5.2.3 Definitions 

One of our goals was to assess the role of two competing definitions used to define 

irrational numbers. We were also interested to see which one of the two is the preferred 

definition for our group and how the coordination of the two definitions affects the performance. 

We assumed that people tend to exhibit either a decimal, fractional, or balanced disposition 

depending on which of the two definitions they adopted or whether they have reconciled the two. 

We were interested to see whether it is possible to have a balanced disposition without 

understanding the equivalency of the two definitions. In other words, can one successfully apply 

either of the two definitions as the situation warrants and still be in the dark as to how one 

follows from the other? Or would the cognitive conflict that arises in case of such confrontation 

destabilize one's concept image to the degree where one would be forced to either abandon one 



of the definitions or reconcile the two in order to once again reach the state of cognitive 

equilibrium? These were the questions we attempted to answer. Clearly, this is difficult to assess 

from a written response. 

A piece of knowledge is the result of the person's adaptation to a situation which 

"justifies" this piece of knowledge by making it more or less effective. One can envisage the 

association of each useful piece of knowledge with a region of effectiveness (and cost). 

(Brousseau, 1997, p. 98) The question here is how effective is each of the two definitions on its 

own and what would it take for the learner to become aware of the "missing link". 

The issue of definitions and their coordination was explored primarily via the clinical 

interviews. The interview questions depended on the participant's responses to Items 1 and 2. In 

general, the interview questions proceeded to establish, first, what definition(s) of irrational 

number is used by the participant, and second, the completeness and accuracy of the definition(s) 

being used. Next the participant was confronted with a seemingly conflicting situation which 

could only be resolved if the "missing link" was not an issue. Such situations are presented in 

Chapter 6 (Section 6.3). This way we established for each interviewee whether the two 

definitions are being used in isolation of each other, whether only one of the definitions is being 

used at all times, or whether the two definitions are seen as equivalent. If they are seen as 

equivalent, is this by decree (because one cannot have inconsistencies in mathematics) or 

because there is a mathematical relationship between the two definitions that has been 

recognized by the participant? 

5.2.4 Relations o f  two infinite sets: density, fitting, richness, and operations 

We investigated prospective teachers' capability to produce adequate intuitive models for 

representing number concepts and operations. Although most of these questions could be 
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answered using formal arguments, most participants resorted to the use of informal intuitive 

arguments. Therefore, we were forced to analyze their response in light of the intuitive models 

that they used. In particular, we explored the PSTs' intuitive dimension of knowledge of 

irrational numbers in the context of real numbers. Furthermore, we were interested in the ways in 

which PSTs strive to harmonize their intuitions with what they formally know to be true about 

the two types of numbers, the rationals and the irrationals, with respect to their abundance, 

density, fitting, and operations between the members of the two sets. 

Existence, density, and richness of irrational numbers 

In order to investigate how PSTs think about the abundance of irrational numbers within 

the set of real numbers, we designed the following two closely related items: 

Item 4: Suppose you pick a number at random fiom [0,1] interval (on the nunlber line of reds). 

What is the probability of getting a rational number? 

The correct answer to Item 4 is 0. One way to see this is by the use of Cantor's 

diagonalization proof of denumerability of rational numbers combined with a reasoning on 

limits. According to the proof, all positive rational numbers can be enumerated; that is, they can 

be brought to a one-one correspondence with natural numbers. We omit the proof, as it is well 

known (interested reader may look it up, for example, in Serge Lang's Math! Encounters with 

high school students, p. 1 16). This implies that all rational numbers on the [0,1] interval can be 

enumerated as well, so that there will be the first, second, third, . . . without missing any of them. 

Of course they will not be in order of magnitude, but rather in order that comes fiom the above 
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mentioned diagonalization process, where all the rational numbers not in the [0,1] interval are 

omitted from the enumeration process. Let us call these enumerated rationals ql, q2, q3, . . . 

Next, we can "capture" each one of the enumerated rationals inside intervals of ever 

decreasing size according to this model: 

q, + lo-(") 

q2 + 10 -@+l) 

q3 + 10 
- (n+2) 

where n is a natural number. The sum of all these intervals in which all the rational 

m 

numbers in the [0,1] have been captured is then equal to: . 
i=O 

For example, if we choose n = 5, then all rational numbers are captured in the interval of 

size 0.00001 1 1 1 1.. ., or 119 x 10 -'. In general, all the rational numbers are captured in the 

interval of size 119 x 10 -"+ ' . This interval can be made as small as we wish (by making n 

sufficiently large). At its limit it decreases to 0, that is to say, no positive, however small, interval 

m 

size can be assigned. l i m c  lo-@+') = 0. 
n+m . 

r=O 

Since all the rational numbers can be "squeezed" into an interval of size 0, the probability 

of picking a rational number is 0. In other words, the rationals can be made to fit into a union 

of intervals whose total length is arbitrarily small. Hence no positive probability can be assigned. 

It was not expected that PSTs come up with a proof such as the one above. We include 

this proof for the sake of completeness only. Our aim was to examine what intuitions our 

participants had regarding the density of irrational numbers and whether or not the idea that there 

are various degrees of infinity was a part of their knowledge repertoire. 
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Fitting 

The following four questions from Item 7 are related to how rational and irrational 

numbers fit together. These questions were designed to both further our understanding about the 

intuitive models of number concepts used by the PSTs, as well as to investigate their formal 

understanding given that the tools for a correct derivation are accessible. 

All of the above statements are true, which can be shown, for example, by using 

existence proofs. How does one reconcile the idea that for any two irrationals, no matter how 

close they are, there is always a rational in between, with the idea that irrationals are so much 

more abundant that the probability of hitting a rational on any interval on the number l i ~ e ,  no 

matter how large the interval may be, is O? It is not easy to imagine that between any two 

numbers whatsoever, regardless of how close they are, there is a countable infinity of rational 

and an uncountable infinity of irrational numbers. To adapt to the evidence of this result, one 

must force oneself to abandon thinking from finite experience when considering questions such 

as these (see the discussion on formal versus natural infinities in 3.2.4). We examined the formal, 

algorithmic, and intuitive arguments that were used by the prospective secondary teachers to 

address these questions. Let us now consider what would be the expected responses concerning 

the fitting of numbers: 



e) It is always possible to find a rational number between any two irrational numbers. 

The claim is true. To see this, let the two irrational numbers be a = ala2a3~. . . and b = 

blb2b3b4.. ., where ai and bi are the i-th digits in the decimal expansions of numbers a, b 

respectively. Without loss of generality, we can assume that there is some first position i = k for 

which ak > bk (i.e., for i < k we have ai = bi ; according to this assumption we also have a > b). 

Then there exists a rational number c = alaza3~... ak , with a property that b < c < a. In other 

words, cutting off all the digits after the first digit in which the two numbers differ from each 

other from the larger one will produce a rational number with the required property. 

f) It is always possible to find an irrational number between any two irrational numbers. 

The claim is true. We can construct such an irrational number similarly as in the question 

before, or, alternatively, we can proceed by looking at the difference d between the two given 

irrational numbers a, b. Without loss of generality, assume a > b. The difference d = a - b can be 

rational or irrational. If it is rational, take one half of it, and add that to the smaller of the two 

irrationals. The resulting number is irrational which is exactly in the middle (arithmetic mean). If 

the difference d is irrational, construct a rational number c by cutting off all the digits after the 

first non-zero digit of d. Clearly, c < d. Now add c to the smaller of the two given irrationals. The 

result is an irrational number which is greater than b (this is because it is equal to b + c where c is 

a positive rational) and it is smaller than a (because a = b + d and c < d so b + c < a). The reason 

we did not take the arithmetic mean of a, b in the case when their difference is irrational is 

because it is not guaranteed that the arithmetic mean of two irrationals is necessarily irrational. In 

fact, it is easy to construct two irrationals, such that theiimean is a whole number. 
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g) It is always possible to find an irrational number between anv two rational numbers. 

The truth of this claim can again be shown by demonstrating how this can be achieved in 

general, for any two rational numbers a, b. Without loss of generality, assume a > b. Now take 

the difference d = a - b and let e = dh. Note that e is irrational and e < d. An irrational number 

between a and b is b + e. This proof takes into account that d/z is irrational, that is, it assumes 

that rational over irrational is irrational. This is easy to justifl using proof by contradiction (i.e., 

rational over irrational equals rational is impossible according to the justification provided for 

question d). 

h) Between any two rational numbers there is always another rational number. 

The truth of this claim is easy to show. Let a = cld and b = elf be two rational numbers 

with c, d, e, f E Z and d, f # 0. Then 54 (cld + elf) = (cf + ed)l(2df) is also a rational number and it 

is between a and b (the arithmetic mean). 

Operations between members of the two complementary number sets 

To investigate how PSTs think about number operations in context of the rational and 

irrational number sets, we designed the following questions: 



It was our assumption that these questions could aid in revealing the stage of 

development of the concepts of rational, irrational and real number. This assumption is based on 

what has been discussed earlier regarding operational versus structural conceptions and the 

attainment of proceptual thinking with respect to number operations. As well, we expected to see 

a variety of ways of tackling these questions. This is because they are accessible in the sense that 

anybody with high school knowledge of number concepts can successfully attempt them, yet 

they are non-standard and as such they lend themselves to a variety of approaches. In particular, 

we were interested in the dispositions that might be revealed (see 4.2.2 for discussion on 

dispositions), such as, for example, whether the arguments given by the participants are based on 

considering the decimal, fractional or symbolic representations. We now offer some possible 

correct responses to the above questions on number operations: 

a) If you add two positive irrational numbers the result is always irrational. 

This claim is false. We can show this using an example. Take the irrational number 

0.12 122 1222 12222 12.. . where the number of 2's between the 1 's keeps increasing by one ad 

infinitum. Adding this number to a "matching transcendental" 0.8787787778777787.. . . . . where 

the number of 7's between the 8's keeps increasing by one ad infinitum, we get 0.9 = 1. We 

would consider this argument as indicative of decimal disposition. On the other hand, one could 

say, consider two irrational numbers a and b, such that a = 5 - n; and b = 5 + n. Clearly, a and b 

are both positive and irrational. Their sum a + b = 5 - n + 5 + n; = 10, so it is rational. This kind 

of argument would be considered as indicative of symbolic disposition; moreover, it would also 

be an indication that the individual has attained a proceptual level of thinking about number 

concepts. It is no longer relying on the decimal representation, but rather makes use of the 

additive inverse property of numbers. 



b) If you add a rational number to an irrational number the result is always irrational. 

This claim is true. One possible way to explain this is by assuming the contrary, and then 

showing it leads to a contradiction. Assume that the sum of a rational number q and an irrational 

number p is rational - call it c. From q + p = c it follows that c - p = q. The left side is rational, 

because the difference of any two rationals is necessarily rational (let c = a/b and p = elf, where 

a, b, e, fare integers, and b, fare not 0. Then c - p = (af - eb)/(bf). The difference c - p is also a 

ratio of two integers with non-zero denominator, and hence it is rational.), while the right side is 

the irrational q. This is a contradiction; therefore, the sum c must be irrational. 

C) If YOU multiply two different irrational numbers the result is always irrational. 

The falsehood of this claim can be shown in various ways; however, it suffices to say 

that, since real numbers are a field, there exists a multiplicative inverse for every number except 

0. For example, multiplicative inverse of n is 11 n. We would need to show that 11 n is irrational 

(assuming that n: is irrational, this follows from question (d) below, so we omit it here), and then 

we could claim that the product of two irrationals, n and 11n is rational. In addition to this 

argument, one could say that the procedure commonly known as "rationalizing the denominator" 

is in fact a case where we multiply an irrational number by another irrational number, namely its 

conjugate, to obtain a rational number (usually in the denominator). Take for example 

(5 - & )(5 + & ) = 23 (note that according to (b) above, and given that & is irrational, also 5 

+ & , and similarly 5 - &, are irrational). Notice that in order to produce arguments of this 

kind, a proceptual level of thinking about numbers such as 5 - & would have to be attained. 
- 

Alternatively, it is possible to use the knowledge of factors of whole numbers together 

with the rule that & 16 = & to arrange that the product of two irrationals is rational,-such as 

in j% &=15. 
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d) If you multiply a rational number by an irrational number the result is always irrational. 

This claim is true. We show this by contradiction. Take the product of an irrational 

number p and a rational number a/b where a, b are non-zero integers, and assume that this 

product is rational, that is, px(a/b) = (cld) where c, d are non-zero integers. Multiplying both 

sides by b/a we obtain p=(bla)(c/d)=(bc)/(ad), which is a contradiction since p is irrational and 

thus cannot be expressed as a ratio of two integers. 

i) A product of two rational numbers can sometimes be irrational. 

This claim is false - a product of rational numbers is necessarily rational, because the set 

of rationals together with the four arithmetic operations form a field. The product (a/b)(c/d), 

where a, by c, d are integers and b, d # 0 is expressible as a ratio of two integers, (ac)/(bd). 

In summary, we analyzed the data related to the relations between the two infinite sets 

from the perspective of intuitive dimension of knowledge for three reasons: first, in order to 

better understand how prospective teachers think about irrational numbers in the context of 

rational and real numbers; second, in order to identify the stage in the life of concept 

development, and third, in order to assess the degree to which the three intuitive obstacles 

mentioned in the previous chapter manifest in the prospective teachers' concept images. 



CHAPTER 6 

Results and Analysis of Formal Knowledge 

In this chapter we present the results and analysis of PSTs' formal knowledge of 

irrational numbers as revealed through their understanding of number sets, representations, and 

definitions. 

6.1 Set membership identification 

As a starting point we look at the PSTs formal knowledge related to irrational numbers 

and their place within the number system. Using the results fiom the data collected on Item 6 

(see Appendix A) of the written questionnaire, we obtained a broad view of PSTs' knowledge of 

the definitions of the various number sets, such as natural numbers, integers, rational numbers, 

irrational numbers, real numbers, and their hierarchical structure within the set of real numbers. 

As described earlier in Section 5.2.1, this question contained 14 items presented in the table 

format. Participants were asked to checkmark all the attributes that apply. An example was 

presented to ensure correct interpretation of instructions. The results are taken to be indicative of 

a .  

the knowledge of definitions and relationships between the number sets. 

Two of the participants left the entire table blank, and were thus not included in the 

quantification of results that follows. In other words, the table below and the discussion that 

follows applies to the results for n=44 participants. All the checkmarks from the participants' 

response sheets were tallied. The shaded fields represent correct responses. The frequency report, 

both as raw score and as percentage is as follows: 



1 Natural I Integer I Rational 1 Irrational 1 Real I 

Table 1 : Frequencies and percentages (n=44) of responses to Question #6 of the written questionnaire. 

The results presented in this table are discussed in greater detail below. Here we would 

like to point out that this format of accounting for responses proved very useful in identifling 

trends. In particular, it served as an aid for bringing the issues related to mathematical 

understanding of the system of real numbers in general, and set recognition in particular to our 

attention. However, it should be noted that the group is too small to do a meaningful statistical 
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analysis on these data; we present the results with an aim to bring up some points that we found 

interesting. 

6.1.1 Structure o f  the real number set 

One of the things we noticed, is that the structure of the set of real numbers as commonly 

depicted by a Venn diagram in high school textbooks, and as suggested by the IRPs, was not a 

part of the knowledge repertoire of all PSTs. Several participants did not make use of the fact 

that some sets are mutually exclusive while others are subsets of other sets, so that a member that 

belongs to such a subset automatically belongs to the "parent set". For these participants the 

definitions were not firmly grasped, and consequently inconsistencies of this nature did not seem 

to bother them. 

Structure versus arbitrarv labels 

In some cases the lacking in the formal knowledge, in this case of definitions, turned out 

to be so severe as to render the concepts of "natural", "integer", "rational", "irrational", and 

"real" devoid of any meaning or purpose beyond arbitrary labeling. The excerpt from the 

interview with Connie exemplifies this view. 

Interviewer: 

Connie: 

Interviewer: 

Connie: 

Interviewer: 

Connie: 

Interviewer: 

Connie: 

What would you say is a real number, what do we call a real number? 

A real number. . . 
Yeah, what's a real number? 

A real number, it exists, like 1,2,3, ne~ative is not real, so, real number exists, l,2,3 ... 

And what's natural number then? 

Natural number would be, oh, I don't know, natural like 1,2,3,4,5,6. . . 
So, natural and real are the same? 

It shouldn't be the same, but I can't remember. . . 

It seems that Connie takes literally the "real" in the "real number" and interprets it as 

"exists" as opposed to negative number, which is only fictional for her. Later on, in the 



discussion about what is the distinction between rational and irrational numbers, Connie 

repeatedly states that she is "muddled" on her definitions. She can provide some examples of 

each, but cannot express what is unifling about each of these categories of numbers. 

Interestingly, Connie finds no real benefit to get cleared up on her definitions; in her view, there 

is no practical benefit to being able to categorize numbers. In the absence of underlying 

concepts, her perception is that it is a game of mere labeling. 

Interviewer: 

Connie: 

Interviewer: 

Connie: 

Interviewer: 

Connie: 

What makes you say this is rational and that is not rational, is there any point in distinguishing 
rationals and irrationals? 

Square root of 2 is irrational. . . 
Okay. . . 
I guess this is like tous of things that I think I remember, I think I remember what is 
rational and irrational, but I don't really know why it is irrational. whv it is rational. 

Okay, I see. Urn, is there any point, like should the students know about these things, what do 
you think? 

I don't think there is, it's like I don't really, I don't need it, even if you do your math, you 
know square root 2 is a square root 2, whether it is rational or not rational, you're using it in 
the calculation or in proving, or whatever. You still use it. So it doesn't sewe any purDose, 
l i e  whv do we want to categorize them as rational and irrational, why do you want to 
learn it, you know, so... 

Out of the 16 PSTs interviewed, two had an extremely limited knowledge of the concept 

or irrational number. When investigating the reason behind this, we found that a simple conflict 

in their understanding proved to have powerful effects, and discouraged them from believing 

they could ever understand what seemed so nonsensical. Judging from the attitude Connie 

expressed, it seems this conflict must have been a part of her concept image for a long time. The 

conflict we speak of consists of a person's simultaneous holding of two beliefs: first, that 

"fraction is rational" and second, that "infinite decimal is irrational". Clearly, this is very 

problematic, as she too recognizes that decimal expansions of many fractions, such as 113, are 

infinite. Interestingly, she keeps holding on to both of these beliefs, and rather than releasing one 
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of them, or making an adjustment in her understanding, she simply gives up. In the end, she is 

even willing to accept that a number could be both rational and irrational. 

Connie: I think fiaction is a rational, okay, I k i d  of remember somethiig, so it's a rational number, 
but when we divide it out, then it's never ending, and then it is an irrational, but it doesn't like 
uh, it's like, if I'm not using it, and I'm not using it, then you know, it's just classification and 
it doesn't mean anything, so it's just, I never bothered to really f i d  out. 

Interviewer: So can some numbers maybe be at the same time irrational and irrational? Could that be 
(pause) that some numbers are both? 

Connie: (pause) If I can see it my way, then yes. . . 

An understanding of the structure of the system of real numbers cannot be reached if a 

person is prevented from drawing a distinction between members of the two complementary sets, 

rational and irrational. However, from the other 14 participants we were able to learn more about 

what the underlying issues in the conceptualization of irrationality are. 

Subsets, exclusive sets, and complementarv sets 

The structural relations between number sets were not firmly grasped amongst a number 

of participants. The most well understood relation is that rational and irrational are 

complementary sets while the least understood are the various subset relations, in particular those 

related to the real number set. 

For example, an integer is not automatically a rational number - there were 12 PSTs with 

at least one case such that a number being identified as integer was not identified as rational. 

Similarly, a rational or irrational number is not automatically real - there were 10 PSTs in our 

group that identified a number as rational or irrational but not real. In addition, we found 9 PSTs 

who checked "real", but checked neither "rational" nor "irrational". It is possible, at least in 

some cases that a participant was certain that the number was real, but could not decide what 

type of real number it was. Some of these errors could be seen as accidental omissions, but for 

the most part they were systemic across many items, and in several cases even accompanied by 
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an outright statement, such as "don't know definition of natural number", written on the response 

sheet. Two PSTs left the entire column "real" unchecked, which we interpret as the absence of 

the definition of real number in their concept image. One participant marked -& as both 

integer and irrational, perhaps being misled by the square root symbol; however, such response is 

possible only in the absence of understanding that these are mutually exclusive sets. 

On the other hand, all participants seem to have known that a number cannot be both 

rational and irrational. There were only two cases of an item having both "rational" and 

"irrational" check-marked (in the case of d0.0016 and x = sin60•‹), which we explain as the 

participant's uncertainty about what to choose and then choosing both (just to be safe) rather 

than hisher belief that it could be both. 

To sum it up, we found that a large proportion of the participants in our group were 

unclear about the definitions of various number sets to the degree where it significantly impaired 

their ability to classifl numbers into various numbers sets. It seems that most participants relied 

on incomplete verbal definitions, memory and examples when deciding on which attributes 

apply to a given number, rather than on a schematic diagram, for example. This is consistent 

with the study of Tirosh, Fischbein, Graeber, and Wilson (2003) study on prospective elementary 

teacher's understanding of rational numbers which found that 8 1% of mathematics majors were 

able to draw an adequate Venn diagram to describe the relations between the natural numbers, 

the integers, the rational numbers, the irrational numbers, and the real numbers. On the other 

hand, only 25% of the non-mathematics majors were able to do so (Tirosh et. al, 2003). 

Given that the ratio of mathematics majors to non-mathematics majors in our group of 

participants was 1 :2, it would be expected that about 43% of them would have an adequate 

knowledge of the definitions of various number sets so as to be able to reproduce the Venn 
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diagram (on the basis of Tirosh at al. study). When drawing the comparison, several issues 

should be taken into account. Firstly, our study did not ask the participants to draw the Venn 

diagram; therefore, we can only make inferences on the basis of data pertaining to Item 6. 

Secondly, the prospective teachers in our study are prospective secondary as opposed to primary 

mathematics teachers, and so we might expect the results to be better than the expected 43%. 

However, considering the fact that the knowledge of definitions of the subsets of the real number 

set is normally expected to be in place long before taking advanced mathematics courses, this 

fact may not be very significant (i.e., the knowledge we are trying to asses is not taught in senior 

level university courses). Lastly, the ability to reproduce the Venn diagram of number sets only 

partially serves as an indicator of the knowledge of definitions. Of course, examining the 

participants' ability to classifj examples of numbers into various sets also gives only a partial 

picture. However, if the examples of numbers to be classified are varied sufficiently, the 

consistency or inconsistency of responses in such set membership identification task may serve 

to discern the level of mastery of the definitions. Section 6.1.3 discusses these findings in greater 

detail. At this point we wish to mention that the overall performance of the group was lower than 

the expected 43%. 

Number sets versus number svstems 

We were interested in what ways those participants who demonstrated a proficiency on 

Item 6 differ from those whose responses were flawed with errors. Although this would be 

useful, it is beyond the scope of this work to provide a fine-grained analysis of how their 

conceptions were acquired or even what the attributes of these conceptions are.   ow ever, we 

wish to point out that their conceptions do not rest solely on definitions. Rather, they operate 

from a much richer platform that sometimes bares reference to the motivation behind the 
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extending of the number sets in order to accommodate operations that are not possible in the 

lower sets. 

In this sense we speak of a number system rather than a number set. Under this view, the 

set of natural numbers, for example, is just that, a "bare" set with no structure, just a bunch of 

elements. In contrast, we may think of the naturals as a structure, in which case we may need to 

specify what kind of structure we are viewing the natural numbers as. We may be interested in 

the natural numbers as an ordered set; so we have the bare objects with the < relation, which is a 

minimal structure. We may be interested in the natural numbers closed4 under the standard 

addition and multiplication. Attending to these structural properties of sets these participants 

seemed to have an advantage over those that had to rely on memory of definitions, or even on 

memory of the Venn diagram. Note that the Venn diagram of number sets does not explain 

anything about number systems in that sense. 

It seems that attending to number systems as opposed to number sets contributes to 

developing a more robust understanding. One of the participants of the study with a high success 

on Item 6, Claire, explains how she thinks of the number sets and how she would teach this to 

her students. What we note in Claire's elaborate discussion is that she is grounding the concepts 

of "natural", "integer", and so on in operations. This supports the view that in the process of 

concept formation, operational conceptions precede the structural. 

Interviewer: How do you define a real number, what is real number to you? 

Claire: A real number, it's a set of numbers which um include all numbers natural, whole numbers, 
natural numbers, integers, rational and irrational. And um, in which almost all operations are 
possible, or defined, yes addition is possible always, subtraction, multiplication, division. 
What is not possible is square root of a negative, because this is the how you introduce the 
complex numbers, so each set of numbers is introduced, in mv opinion, from this 
perspective of operations. 

By the idea of closure we mean the following. Let U be a set with certain operations defined on it. A subset B is 
said to be closed under the operations if the result of applying the operations to elements of B gives an object in B. 



Interviewer: 

Claire: 

Interviewer: 

Claire: 

Oh, right. How is that? 

So in order to introduce, for example, the integers, we talk to the student, you know, if you 
want to subtract 5 - 2, for example, is 3. The answer is a natural number, but if you want to 
subtract 5 - 9, what number is it, and you said, oh, oh, it's not a number. . ., yes it is, we define 
it, a new class, a new set of numbers, it's called whatever, and you introduce integers. 

So you provide a motivation for introducing the new sets of numbers? 

Why, so the why, I provide them always the why. And then the next level, I provide the why 
because the division is not always possible in fact. It is for some numbers, and so on, you 
know, but not in general, in the set of integers. So fiom natural then you go to Z, then rational 
Q, yes, and we have real. So the whole numbers are included in the real numbers, and also in 
the rationals. 

Here we see Claire jumping a little bit too fast from rational to real numbers, so we 

questioned her on that. It turns out the road is not as smooth as in previous cases, even for her, 

and that the operation of taking a square root is perceived as a stumbling block and likely to 

present a didactical problem. 

Interviewer: Okay. And then um, as you said, there's always a widening set so that you can incorporate 
new operations, what will be then the motivation, why, how, why have we gone to reals? 

Claire: In order to solve the equation x2 = 2, yes we need the square root, it's not possible, the square 
root is not possible in urn, just a sec, the value, now yeah, I never thought about this question, 
and see how a student can get them, yeah, as long as you don't have square root as operation 
in other sets of numbers, of course that square root of 16, it's natural it's 4, it is a natural 
number then, because the symbol square root does not even exist as operation in natural, or Z 
or Q. . .Not many students understand why, it's very hard to understand, but you can make 
them, how I taught, I can tell you, for example I always prove as a model sauare root of 2 
and then by examples. Because it's not a continuous set, thev cannot see it like um, for 
examale natural numbers. on the number line, like nicelv one after another one, so you 
have to explain them, okay I give you models. 

What we find interesting in this reply is the claim that irrational numbers are not 

continuous and that they need to be built through models, perhaps meaning geometric models. 

From the excerpt it would seem that Claire's conception of irrational is confined to square roots: 

however; this is not evident from her written response. It is more likely that this is how she 
- 

would teach the concept, which is not necessarily identical to how she personally understands it. 



6.1.2 Analysis o f  sub items 

We now examine the degree of success on each of the sub items given in Item 6. We 

tallied the correct responses for each of these numbers in order to find out which were the most 

and which the least problematic numbers to classify and what we can learn from that. That is to 

say, only those numbers that were correctly classified across all fields (natural, integer, rational, 

irrational, real) are included in this count. The frequencies appear in the table below. 

Item 1 Number of entirelv correct res~onses C%1 

0.9999999.. . 
The solution of the 
equation 2" = 3 
The solution of the 
equation x = COST I 
The solution of the 
equation x = sin60•‹ 
The solution of the 
equation 3x + 1 = 0 
The area of the unit 
circle 

q m  

Table 2: Frequencies and percentages (n=44) of responses to the sub items of Question #6 for which all the 
attributes that apply have been correctly identified. 



As expected, the most problematic number to classifl was the classic example of 

0.9999999.. . , which, as we mentioned, served primarily to identifl those candidates from which 

we can learn a great deal about how they acquired their mathematical knowledge of number. 

Only one person responded correctly to this item. 

What came to us as a surprise is the unexpectedly low performance on the "the area of a 

unit circle." Upon examining the reasons behind this erroneous error, we found that it is most 

likely the word unit that triggered a mechanical response in 5 of the participants who checked 

"natural", "integer", "rational", and "real". Six other PSTs left this item unanswered, perhaps 

wondering how an area can be a number. 

Similarly, x = sin 60" seems to have triggered an unexpectedly high response stating that 

x should be rational. This item was the most problematic after the 0.9999999.. . The connection 

between the height of an equilateral triangle whose side length equals 1 and sin 60" does not 

seem to be readily available to most PSTs. Instead, what seems to be the case here, is the 

thinking that since 60 is a nice whole number, sin 60" should be rational too. In fact, a good 

number of participants who identified sin 60" as rational also identified the cos ( d 3 )  as irrational. 

That is to say, it was the argument of the trigonometric function that they were focusing on rather 

than the value of the function at that argument. 

The next in the group of most problematic items, with the performance still well bellow 

50% of the PSTs was the solution to 2" = 3 .  Although there exists a simple and elegant way to 

see that x must be irrational this kind of reasoning seemed to be out of reach for most of the 

PSTs. Most of those - that answered correctly based their decision on their experience with 

logarithms. The prevailing thinking is that in a great majority of cases logarithms do not end up 

being "nice" numbers, so it is most likely that such is the case here as well. Many participants 

left this item blank, perhaps because they did not have a calculator available (please note that 
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calculator was allowed, but not provided) that would help them decide. Quite a few others chose 

rational or even natural, failing to see that it cannot be. Assuming x = m/n with m, n integers and 

raising both sides of the equation to the power of n, we get 2m =3", an impossibility according to 

the Fundamental Theorem of Arithmetic. Therefore, x is irrational. 

Also surprising is the poor performance on -a. The types of errors ranged from the 

omission of "rational" (this was the most common error in this item) to classifying it as 

irrational, to classifying it as natural. 

On the other hand, the most successful item was the solution to the liner equation, 

3x+1=0. Perhaps due to familiarity with linear equations as well as with fractions such as -113, 

despite the negative sign, 3 1 out of 44 PSTs were able to correctly identify all the applicable 

attributes. We note the relatively high performance on both ~0.0016•‹.0016 and & which seems to 

be an indication that PSTs are well trained in the algorithms of simplifying a radical. 

6.1.3 A snapshot o f  the PSTs ' performance as a group 

We counted how many items were incorrectly classified by each of the participants. The 

bar graph below is representative of the general performance of the group. The vertical axis 

represents the number of participants, and the horizontal axis represents the number of incorrect 

responses. We see that only one person correctly classified all 14 numbers given in Item 6. Next, 

we see that 4 people correctly classified 13 out of the 14 items. In other words, they had only one 

incorrectly classified item, that being the problematic 0.9999999.. . . Another 4 people correctly 

classified 12 out of the 14 items, with only one other error besides the 0.9999999.. . (each 
- 

participant incorrectly classified a different item: #1, #6, #7, #12). Looking at the next bar in the 

bar graph, we see that nobody had exactly 3 incorrect items, but there were five people who 

incorrectly classified 4 out of the 14 items, and so on. There were 3 people that had errors in all 
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14 items. The median performance of the group was 8 correctly classified items out of a total of 

14 items. More precisely, over 213 of the participants incorrectly classified 6 or more items from 

this table. 

Frequency of PSTs by the number of 
incorrect items 

0 1  2  3  4 5 6 7 8 9 1 0 1 1 1 2 1 3  14 

number of incorrect items 

Figure 2: Distribution of participants by the number of incorrectly classified items f?om Question #6 (n=44). 

Judging fiom this table that contains 14 items, it seems that the prospective teachers fiom 

this group fall into three distinct groups. Although the distribution is roughly natural, we can say 

that the three groups are formed by the top nine (20.4%) with at most two incorrect items, the 

middle twenty-three (52.3%) with four to eight incorrect items, and the low twelve (27.3%) with 

eleven or more incorrect items. Let us call these groups A, B, C respectively for easier reference 

later on. 

The participants' performance on these items was used to identify which candidates 

would be interesting to choose for the interview to gain a hller insight into how people think 

about irrationality. It should be noted that from the 16 prospective teachers that participated in 

the clinical interview 3 come from group A, 9 from group B, and 4 fiom the high end of group C. 
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In other words, the prospective teachers who participated in the interview were representative of 

the entire group (this has been briefly discussed in the part describing the design of the study, 

Section 5.1). In Appendix B the reader may find the list of the interviewed participants by their 

pseudonyms and their respective group. 

Based on the results presented in Graph 1, we maintain that only 9 out of 46 prospective 

secondary teachers showed competence in this set membership identification task. That is to say, 

only about 20% of them demonstrated an adequate ability or skill in classifjmg the given 

numbers into various number sets, so that they achieved 12/14 or higher on Item 6 (i.e., 12 out of 

14 items classified correctly across all attributes). Naturally, we wanted to account for such weak 

performance on this task, which lead us to dig beneath the surface. Attending to the role that 

representations play in concluding rationality or irrationality of a number provided some key 

answers. 

6.2 Representations 

Using Items 1,2, and 3 we analyzed the participants' reliance on the representational 

features of numbers affecting their decisions with respect to irrationality. We first present the 

quantitative summary of written responses for the first two items. We then focus on the details of 

several interviews, identifying some common trends in participants' approaches to the presented 

questions. We also discuss some common erroneous beliefs found amongst the PSTs and we 

attempt to identify their sources. 

where the number of 2's between the 1's keeps increasing by one). Is this a rational or 

irrational number? How do you know? 
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Response category 

Correct answer with correct justification 
Correct answer with incorrect justification (such as, "this number 

- - 

Table 3: Quantification of results for Item 1 - considering 0.12122122212.. . (n=46). 

Number of participants [%I 

27 [58.7%] 
7 [15.2%] 

is irrational because there is an infinite number of digits") 
Correct answer with no justification 
Incorrect answer 
No answer 

display shows 0.63855421687. Is M a rational or an irrational number? Explain. 

1 [2.2%] 
6 [13%] 
5 [10.9%] 

Response category 

I I is rational because the digits t&ninateW) A I 

Number of participants [%I 

Correct answer with correct justification 
Correct answer with incorrect justification (such as, "this number 

U I 

Correct answer with no justification 12 [4.3%] 

3 1 [67.4%] 
7 [15.2%1 

Table 4: Quantification of results for Item 2 -considering 53/83 ( ~ 4 6 ) .  

Incorrect answer 
No answer 

As shown in these tables, over 40% of the participants did not recognize the non- 

5 [10.9%] 
1 [2.2%] 

repeating decimal representation as a representation of an irrational number. Further, over 30% 

of the participants either failed to recognize a number represented as a common fraction as being 

rational or provided incorrect justifications for their claim. It is evident that for a significant 

number of participants, the definitions of rational and irrational numbers were not a part of their 

active repertoire of knowledge. We examine the issue of definitions in greater detail later in this 

chapter. 

Let us consider the responses of one participant, Steve, that shed light on the possible 

sources of errors and misconceptions. 
- 

Steve: (claiming 0.12122 1222.. . is irrational) Um hm, I would say because it's not a common, there's 
not a common element repeating there that it would make it a rational ... 



Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

Interviewer: 

Steve: 

How about this one, 0.0122222.. .with 2 repeating endlessly, is this rational of irrational? 

Okay, I would have to say that's irrational real number. 

Irrational or rational, I couldn't hear you. 

Irrational. Well 04 the 2 repeats, no but it has to be, then it repeats, even though the 2 
repeats, it has to be a common  att tern, so I would say it's irrational. 

Okay, so 0.01222.. . repeating infmitely is irrational. 

I think so, but I forget if the fact that that, if the 1 there changes, I would have thought it 
would have to be 012, . . . but if it starts repeating later, yeah I can't remember if it starts 
repeating later, I'm pretty sure it's irrational, but I could be mistaken. 

How about the second question, when you consider 53 divided by 83. . . 
Um hm. . . 
And let's call this quotient M, and if you perform this division on the calculator the display 
shows this number, 0.63855421687. 

And I assume it keeps going, that's just what fits on your calculator. . . 

Yeah, that's what the calculator shows, that's right. So is M rational or irrational? 

So this is the quotient M, yeah I would say it's irrational. 

Because? 

Because we can't see a r e ~ e a t i n ~  decimal. 

But maybe later, down the road it starts repeating. 

Well that's true, it's possible. . . 
So we can't really determine? 

Well I guess we don't, we wouldn't know for sure just from lookine at that number on the 
calculator, but chances are that if it hasn't reueated that quickly, then it would be 
irrational. I haven't seen a lot of examples where they start repeating with 10 digits or more. 
I'm sure there are some but ... . 
Okay, and the fact that it comes fiom dividing 53 by 83, does that not qualifj it as rational? 

Oh so that is a fraction, it's 53/83? 

Yeah we, that's how we got this number, so we divided 53 by 83 and called this M. . . 
53/83 as it's written would be rational, but yeah, I see what you mean, if you took that 
decimal, yeah, I guess that's a good point. I see what you're, you're saying that fact that it's 
53/83 that is AIB, so that is rational, but then when you take, if you started dividing. . . It 
would iust go on and on and on and on. so that you would think is irrational. Yeah, I 
must say I don't know the answer to that. 

In the beginning of the interview Steve claims correctly that an infinite non-repeating 

decimal fraction represents an irrational number. However, his use of the words "common 

element" prompts an - inquiry into his perception of "common". This perception is clarified in 

Steve's incorrect claim that 0.0122222.. . is also irrational. Steve is looking for a common 



pattern, and the repeating digit of 2 does not seem to fit his perception of a pattern. For the next 

question Steve is presented with a fraction 53/83 and distracted by its display on a calculator. 

Focusing on the decimal representation rather than the common fraction representation, his first 

response - this quotient is irrational - presents an oxymoron. It is based on the inability to "see" 

the repeating pattern. The underlying assumption here is that a repeating pattern, if it exists, has a 

short and easily detectable repeating cycle. This perception is confkonted by the interviewer in 

directing Steve's attention to the number representation as a fraction, 53/83. From his reply it 

appears that Steve believes that whether the number is rational or irrational depends on how it is 

written; that is, a common fraction represents a rational number, but its equivalent decimal 

representation could be irrational. 

6.2.1 Decimal disposition 

We found that decimal representation is the preferred representation in deciding the 

rationality or irrationality of a number for many PSTs. As in the case of Steve, there was a 

tendency to ignore the transparency of rationality inherent in the fractional representation, and 

instead rely on the truncated decimal representation offered by the calculator display. 

Interviewer: How did you decide that 5/3 1 is irrational what makes you believe that? 

Ed: Well I punched it into the calculator so yeah. . . 
Interviewer: Oh okay. . . 
Ed: Yeah, but I mean even if I hadn't, I would have looked at it and said that's, I mean that's got 

to be, must be irrational right, but I didn't want to, I wasn't sure if you wanted us to kind of, 
you know, just do it in our heads, but urn. . . 

We found that one of the reasons for this state of affairs is the purely operational 
I 

I 
! approach to rationals. That is to say, the division of integers is still only a process, and so 53/83 

cannot yet be seen at will as a static entity. From our theoretical perspective, we would say that 

the concept of fraction has not been reified. We learn from one of the interviewees, Amy, why it 



is so unnatural for her to consider the representation as a common fiaction in deciding 

irrationality or rationality of a number. 

Amy: (Afier interviewer directed her attention to the number representation as a fraction) Well 
okay, what I see from, thinking about it that way, because I don't see this as being a 
number, like if you're going to decide about something. Like this isn't a number, 53/83 isn't 
a number, but 0.638.., and does this continue? Is that ..., or is that ? 

Amy cannot decide simply by looking at 53/83; she thinks she must divide it out first. 

Amy interprets a h  as an instruction for division. Unlike Steve, however, Amy is not convinced 

that periods should always be short. She considers the conflict that arises from judging 

rationality of a number based on the digits displayed on the calculator. It may lead her to a wrong 

conclusion, because "the decimals could start repeating". 

Amy: It seems like a contradiction (laugh). But how do you know, like how far, like maybe the 
pattern happens and it's harder to see. Like maybe there's something that's, maybe this does 
repeat at some point, I don't know. Yeah, I don't know. . . I mean you could always long 
divide it out with long division, and keep going and going and going and look for a pattern, 
um, because you get more numbers, or with a computer that you can set up to look at more 
decimal places and look for a pattern. 

It is most likely that Amy has not had much experience with division in her life, because 

if she had, she could have known that the decimals must start repeating. We designate this as the 

case of "missing link", and we discuss it further in the section on definitions. 

I Verbal obstacles 

If one is to determine rationality or irrationality of a number from its decimal 

representation, one must have a reliable way to do this. The way we speak about things 

1 

influences the way we think about things. Although the usage of the word "pattern" with respect 

I 
I to decimal expansion of a number is not used as a guiding principle in discerning rationality or 
I - 

irrationality of a number in any of the standard mathematics high school textbooks, we find that 
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is a common practice nevertheless. Nearly all the PSTs who exhibited decimal disposition, such 

as Steve, Ed and Amy, used this word, either in the stricter sense of "repeating pattern" or in the 

looser sense without the crucial repeating part. Regardless of the sense in which they used it, we 

find this language to be vague and prone to personal interpretation. We thus consider it a verbal 

obstacle. 

According to Brousseau (1997), an obstacle has its domain of validity (but in another 

domain it is false, ineffective, and a source of errors), which makes it so resistant. All PSTs who 

rely on "pattern" are able to successfully identify as rational the immediately repeating decimals 

(such as 0.12 121 2.. .) but not necessarily the eventually repeating decimals, such as 

0.012222.. .). The following excerpt demonstrates this. 

Interviewer: 

Amy: 

Interviewer: 

Amy: 

Interviewer: 

Amy: 

Interviewer: 

Amy: 

Interviewer: 

Amy: 

How about this one, 0.0122222 with 2 repeating endlessly, is this number rational or 
irrational? 

L i e  why is it irrational, why did I say that? 

Yeah.. . 
Urn, because there isn't um, it repeats without a pattern. I think that the pattern should 
have to start right after the decimal point, not anmhere  in the middle. . . 
Okay. . . 
Because .0 1 wouldn't come up again, just the 2, if that's written the way, like the way that I 
would see it is like the low line over the 2, to say only that the 2 repeats. 

Okay, so if you have 0.012 with a little line indicating that only 2 repeats endlessly then you 
would slot it as irrational? 

Right. . . 
Because the repeating doesn't have the starting right fiom the decimal point. . . 
Yeah, yeah, I think the whole decimal has to be part of the pattern for it to be rational. 

This is the same misconception as presented earlier; however, in contrast with Steve, 

Amy is very sure of her rule while Steve admits he could be mistaken. The point is, why would 

one ever want to memorize such strange and insignificant rules, to think that if the decimal starts 

repeating right away then it is a rational number, while if it starts repeating later it is irrational? 
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This has nothing to do with rationality or irrationality of numbers. Cases such as these speak of 

why it is that for so many, mathematics is nothing but a collection of arbitrary rules to be 

memorized. 

Patterned transcendentals 

We have demonstrated how some PSTs applied their notion of "pattern" to conclude that 

the eventually repeating decimals are irrational. Interestingly, this verbal obstacle works the 

other way as well. It allows people to claim that irrational numbers are rational. More 

specifically, the transcendental irrationals with patterned decimal representations, such as the one 

in Item 1, have been identified by some PSTs as rational numbers. Interview with Matthew 

exemplifies this. 

Interviewer: 

Matthew: 

Interviewer: 

Matthew: 

Interviewer: 

Matthew: 

Interviewer: 

Matthew: 

So can you please tell me how you recognize an irrational number? 

It's a number that um doesn't have any sort of pattern, or doesn't, or it doesn't terminate ever, 
or as far as you can see. And it doesn't have any sort of  att tern. . . 
So number like 0.12 122 1222, where the number of 2's between every successive 1's keeps 
increasing by 1, would that be a rational or irrational number? 

Rational. . . 
So to you, what is the definition of a rational number? 

A number that either does terminate, or doesn't terminate and has a definite  att tern. 

Well, so you consider this to be a pattern . . . 
Yes, it's definitely a pattern. . . So it is rational. 

We see this omission of the requirement for repeating despite the fact that examples of 

such transcendental numbers are given in high school textbooks with an explicit intention to 

clarify for the student what is to be taken as pattern and what not when determining whether a 

number is irrational. Again, the true distinction between Q and 6 is not understood - it often 

becomes just a game of analyzing decimals and nothing more. This unfortunate misinterpretation 



of repeating pattern as simply "pattern" and the reliance on this interpretation, as we have 

demonstrated, serves only to complicate the matters. 

Irrationals as unreasonable numbers 

The theme of the requirement for pattern also came up in the interview with Ed, who 

holds quite a sophisticated conception of rational and irrational numbers. He was a very 

successful student, one of the best in the class. For example, on Item 6 he identified entirely 

correctly 10 out of 14 numbers, demonstrating that the region of effectiveness across the sub 

items was rather high. However, his conceptions lead to incorrect conclusions for both Items I 

and 2. 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

So tell me what does it mean to you for a number to be irrational? 

Um oh god, um irrational number, urn. . . 

There's no rush, you can take time and think. 

Well I mean, it's, the word irrational obviouslv means it can do some thin^ that we can't 
understand, right, it's k i d  of like you have to shake your head and you can't figure it out 
right. . . 
The word? And as a number? 

As a, yeah, so it's the same kind of thing right, so you think of it as like a number that you 
can't really explain, it's just sort of, you know, it goes on and on and there's no svstem to 
it. . . - 
How do you identify them though? How do you distinguish them from rational numbers? 

Um, well my understanding is that like with a rational number vou always have some kind 
of a pattern, there's always something that you can sort of, okay like at this point we can, we 
can tell you what all the numbers will be because we know the rule that the number follows, 
whatever that, no matter how long it is, whatever, we know what they're going to be, all the 
digits, whereas irrational number it's like you can't really, you can't know its digits. You have 
to actually sit down like with pi right, you don't know ahead of time like, okay what's the 
1,000& digit, I can't just quickly tell you right. Of course the computer will tell you right, so 
it's a complicated process to find out what that would be, there's no like systematic way of , 

findig the answer right. 

Okay, and you can tell easily what the 1,000& digit will - be for any rational number, no 
problem? 

That's my feeling yeah. 

How exactly do you tell for a rational? 

Uh, well like I'm saying, my understanding is that there is a svstem so I guess um like if the 
number, for example, goes 12 and it goes, like because of the decimal places right, 0. 



Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

121221222.. . , right, there's one 2 and there's two 2's and there's three 2's and four 2's and 
five 2's um I mean I'm assuming there's a quick way to turn that into sort of a formula or 
whatever where you can actually establish what that 1,000~ digit, whether it would be a 2 or 
would it be a 1 right, . . . 
So is this number that you just mentioned a rational or irrational? 

I think it would be rational. . . 
Rational. . 
Because there seems to be a svstem to it like, like um, you know, you could, I mean it is 
interminable, like it goes on forever, but at the same time like you can easilv ex~lain how it's 
working right. Like that's my feeling, so in an irrational number it's impossible to pin it 
down like that, I mean you can say okay well this came, from this divided by this or whatever, 
right, but urn you can't reallv explain the number itself, like the result of that division, you 
can't explain what is, why are these digits the way they are without just multiplying, or sorry 
without doing the division so (laugh). 

Okay, so what would you say for 53 divided by 83. Is this number rational or irrational? 

Yeah, I think it's irrational. . . 
You think it's irrational. . . 
Just by looking, I mean I have no idea what the result would be iust bv looking at the two, 
53 and 83 r i ~ h t ,  by looking at the answer right, probably doing it on your calculator, I mean, 
it just looks like it would be an irrational number, right. I mean that's, like the thing is, you 
know, my understanding of math isn't huge, so I just look at a number and like "that looks 
irrational to me" right, then I was thinking at the time like if I could, if I really want to I could 
turn on mv computer and put it in there, one of those it just displays all the numbers, it 
doesn't limit you to 10 digits, ?? so I mean if it. . 
So you're aware that you're limited by 10 digits here. . . 
Yeah, yeah. . . Yeah, I mean I iust have to assume one or  the other and it looks like a 
disorganized number so (laugh). it looks an irrational to me. 

As evident, Ed thinks rational numbers are organized, they have a system to them, and 

you can predict their digits - they are reasonable. On the other hand, irrational numbers are 

something we cannot explain, they are disorganized and unpredictable. Ed's conception of 

irrational number hinges on the lay meaning of the word irrational as "unreasonable" to which he 

adds a somewhat more mathematical connotation as "disorganized". In contrast with Connie, to 

him, "rational" and "irrational" are not just meaningless labels - there is rather a tangible quality 

of numbers that is captured by this distinction. For example, rational numbers have an "appealing 



nature". What is more, due to the huge restrictions imposed by what Ed considers to be an 

organized number, rational numbers are seen to be kind of scarce. 

Ed: But like if I have, like you think about numbers right, like thii about numbers that are 
rational numbers right, and they look, I mean they have a certain k i d  of appealing nature to 
them r i~ht ,  because they're nice like .2222 right, or something like that right, -2 12 1 and just 
verv nice right, but like it, you know. It tends to be that there's verv few things that work 
out that wav. it's iust that because we kind of manipulate the situations right. We 
always think l i e ,  okay let's make our math textbook, or whatever right, let's make sure 
everything is a rational number right, because it just looks better in print, or whatever right. 

Ed thinks of rationality as some kind of quality of numbers that can easily be destroyed, 

especially with actions such as division and other manipulations. This explains why Ed expects 

most fractions to be irrational - there are just very few ratios that end up looking "nice". And 

one can pretty much rely on the calculator to see if the number is nice and organized. Later on in 

the interview this conception of the volatile nature of rational numbers is confmed. 

Ed: 

Interviewer: 

Ed: 

Interviewer: 

Ed: 

But just imagine if you have a rational number and you change one digit like, you know, a 
million places down the line whatever, increase it by 1 right, um, automatically I think vou 
destrov that it's a rational number, it's no longer a rational number, so that a number that's 
very close to a rational number it's like can't be rational, you know. 

Let me ask you something, what if you have a number like um 0.33333 a hundred of those 3's 
and then a 1 on the 101" place and then again continues just with 3's. . . 
And then comes another 1. . . 
No never again, is that a rational or irrational? 

I'm thinking right now that that's, I mean that seems irrational, because um it looks nice right, 
but why is that 1 there right, why is it not coming back, I mean if a number comes back right, 
then there's something, there's not really, well yeah there's no real pattern I guess. 

Ed's comment that increasing the value of one digit in a rational number would destroy 

its rationality prompts and inquiry in how he thinks about the eventually repeating decimals. 

Since the very last number of Item 6, that is 0.01222.. ., was answered correctly by Ed, as it 

seemed to fit his view of organized number, the interviewer offered and exaggerated eventually 

repeating number instead. Here Ed becomes confused because of the clash between the two 

requirements imposed by his definition - that digits should be predictable, and that the number 
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should be organized. Ed's concept image seems to be very demanding in that it requires of him 

very difficult mental processes in handling or at least considering all the infinitely many digits at 

once in case one of them should misbehave. From our perspective, we would say Ed displayed 

an accentuated decimal disposition. In summary, from the perspective of rational as reasonable 

instead of ratio, one is doomed to rely on calculator to judge the reasonableness of digits. From 

this perspective, most fractions turn out to be unreasonable, thus irrational. We consider this 

another verbal obstacle. 

Infinite decimals versus terminating decimals 

Although we were aware that there exists a belief among students that terminating 

decimals are rational and infinite decimals are irrational, we did not expect to find this belief 

among our group of participants, given their educational background. One prospective teacher, 

Katie, who has been out of school for a while and decided to take her teaching degree, held this 

belief. 

Interviewer: 

Katie: 

Interviewer: 

Katie: 

Interviewer: 

Katie: 

Interviewer: 

Katie: 

Interviewer: 

Katie: 

Okay, and how do you distinguish rational numbers fiom irrational numbers? 

Um, (pause) Irrational numbers are something which you don't know the exact value. If you 
divide something and then it gives 0.3333 ..., and you don't know what the exact number 
5 that would be irrational, but .5 would be rational. 

Because? 

It terminates and then it's a, then I can see if that's the real number and otherwise if it's let's 
say 0.3333 . . . and it iust reueats and then there's no end, then I can't reallv tell what the 
actual number is. 

So if it repeats and there's no end to it, you would say that it is irrational. . . 
Um hm. . . 
Okay. Um, now here on question 2 if you remember, when you divide 53 by 83 and we said 
let's call this quotient M, but when we perform this division on the calculator, this is what the 
display shows, so the question is, is M rational or irrational? What would you say? 

It ends there right? So the number ends there, and when I multiplied, I don't know what I was 
thinking, but I thought that when I multiplied this number with 83 I do get 53, so I t h i  that's 
why I put down it's a rational number. 

Oh, okay I see, because it's a decimal that terminates. . . 
Yeah. . . 



Interviewer: I see. 

Katie: This is what I was thhking, it's infinite numbers and it's finite numbers. . 
Interviewer: So am I right if I say that you distinguish irrational from irrationals just by looking at whether 

it is. . . 
Katie: Whether they terminate or not, that's what I was looking really. . . 
Interviewer: Yeah. . . 
Katie: Yeah. If, let's say if it's a ratio, and I trv to ex~ress  it in decimal form and if it doesn't 

terminate, then I would say it's an irrational and if it terminates, then I would say it's 
rational. 

From her response we see that Katie is troubled by the infinite decimals, she feels the 

number is somehow constructed in time and she cannot know what the exact number is since 

there is no end to its digits. From her perspective, the number is still in the making; therefore, 

impossible to be conceived of as an object. We see this as yet another case of the concept of 

rational number in its early stage of development (interiorization phase). 

Interesting enough, despite her erroneous belief, Katie answered both Items 1 and 2 

correctly, and from the justifications on the written response it would be hard to tell that she 

maintains this view. For example, she claims that 0.12 122 1222 12.. . is irrational because "it 

cannot be expressed as a ratio and has infinite number of entries after the decimal point". The 

way she uses and was not clear until the probing of her thinking occurred during the clinical 

interview where we find out that whether a number can be expressed as a ratio of two integers is 

in fact irrelevant for Katie. 

Now, it should be pointed out that later on in the interview with Katie some teaching 

from the interviewer occurred, and some ideas became clarified. This aided us to see how Katie 

thought about rational and irrational numbers, as she was able to become the observer of her 
- 

thinking which helped explain how it is that she correctly answered Item 2 despite her 

- 
problematic concept image. 



On Item 2, her thinking was that M and the number on the calculator display were 

identical, and since the number on the display was a terminating decimal, M must be rational. In 

the written response, she justifies this by writing "Mx83=53". What we do not find out until the 

interview is that she is in fact aided by the calculator in confirming her thinking that M = 

"calculator display". 

Interviewer: Yeah, okay. Is there anything that still sort of puzzles you or bugs you that you would like to 
address here or tell me more about? 

Katie: Okay, if I have 0.33333.. . and plugged it into my computer and multiplied it by 3, would I get 
answer I? 

Interviewer: Your calculator doesn't hold infinitely many digits, you know, so you, you have a round off 
error, but still most calculators adjust for that and do give you the answer 1. 

Katie: Okay, there's another wav I was testinp whether I should pet irrational or not. . . 
Interviewer: How is that? 

Katie: Uh huh, so because then I was looking at this one and I was trvinp to test whether it would 
be rational or not. I was twine to cross multiplv M with 83 and see if I can come up 
with 53. . . 

Interviewer: And you did? 

Katie: And I did, so I figured this is rational because, this is another thing that I remembered that if 
you could multielv and then come up with the numerator then it's rational. 

In fact, Katie was using the calculator to test out whether the digits of the resulting 

quotient continue or whether they terminate. When she used the finite decimal and multiplied it 

by the denominator, and got the numerator - this confirmed that the division of 53 by 83 yields a 

finite decimal, thus M was concluded to be rational. As we can see, Katie had a good reason, not 

just a plain guess, to believe that what the calculator showed was indeed equal to M. How could 

she have known that she had been tricked by the sophisticated rounding feature built in most of 

today's calculators? Had she entered the digits of M, rather than arriving at them as a result of 

division, the result could have been different. 

From the perspective of decimal disposition, it seems reasonable to distinguish between 

infinite and finite decimals. It is certainly the most prominent feature of a number when looking 
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at its decimal form. But to bunch the infinite repeating decimals with terminating decimals and to 

call that rational, and to call all the other infinite decimals that are left (the non-repeating) 

irrational, does not make much sense for many students. If anything, one should have a three- 

way distinction: terminating, infinite-repeating, and infinite non-repeating. The concept of 

irrationality is confused with one of its representations. In the climate of overemphasis on 

decimals in school mathematics, this view would be a plausible view to adopt. However, as we 

shall see, this view may be sometimes due to the confusion between n and one of its 

approximations. 

n as a special case 

In our inquiry into how Katie acquired her understanding of infinite and finite decimal 

expansions to correspond to irrational and rational numbers respectively, we found that it is the 

result of an adaptation of her concept image to fit the evidence concerning the number n. 

Namely, Katie believes that n is irrational. Of course she would, everyone knows that - this fact 

does not escape anyone who was schooled. The problem is, Katie also believes that n equals 

2217. Necessarily, these two "pieces of knowledge" fuse together to bring about the kind of 

understanding that Katie holds. The need for reshaping one's cognitive schema to ensure some 

consistency in one's mathematical thinking about these things is a pressing matter, and one does 

the best one can do from the basis of such faulty information. 

Interviewer: With pi, your teacher said it's. . . 
Katie: Irrational, I had heard that. Like I was trying to, when talkiig real and rational, irrationals, I 

had to close my eyes and reflect back so many years, and one of the numbers that came fiom 
my memory bank as irrational was pi and I based the whole exam on that. 

- 

Interviewer: Okay, so when you based your, that's not an exam, you know, . . . 

Katie: No, no, not an exam, I mean the whole questionmaire here, I was trying to answer based on 
that limited knowledge, because I didn't have the depth of howledge. I had two strings that I 
was hanging on to, one was . . .Pi and yes pi is there. . . 

Interviewer: So you remembered that pi is irrational. . . 



Katie: Yeah, and Pi is normally expressed as 2217 and I knew pi is irrational, and then I thought 
when I divide 2217 the number repeats and never ends, so I thought a number that never ends 
is irrational. 

Interviewer: It makes very, very good sense to me, you know, the way you thought about it. I can see your 
point. 

Katie: Yeah, this is what I thought, so this is the wrong way of looking at rational and irrational 
numbers. . . 

Summary of written responses stemming from decimal disposition 

In what follows we demonstrate several frequent erroneous beliefs expressed by the 

participants in their written questionnaires, some of which have been exemplified in the excerpts 

from various interviews. Given that several of the PSTs we interviewed operated from a decimal 

disposition, we see that conflicts arise from applying incorrect or incomplete characterization of 

decimal expansions in deciding the irrationality of numbers. However, the source of the conflict 

is poor understanding of the relationship between fractions and their decimal representations. It 

seems that the present day didactical choice is that somehow we can short-circuit the need for 

understanding this relationship and give the student a substitute for understanding instead - a 

recipe on how to look at the decimal expansion of a number to decide whether it is rational ("if 

the digits terminate or have a repeating pattern") or irrational ("if the digits are non-repeating and 

non-terminating). The following examples summarize the major themes that were brought to 

light with respect to incorrect usage and over reliance on this recipe. 

If there is a pattern, then the number is rational. Therefore 0.12 122 1222 12.. . is rational, 

(similarly, O.lOO2OO3OO.. . is rational, but 0.745555.. . is not, because there is no pattern). 

53/83 is irrational because there is no pattern in the decimal 0.63855421687. 

53/83 is rational because it terminates (calculator shows 0.63855421687) 

53/83 could be rational or irrational - I cannot tell whether dkits will repeat because too 

few digits are shown. They might repeat or they might not. 
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There is no way of telling if 53/83 is rational - unless you actually do the division which 

could take you forever. Digits might terminate at a millionth place or they might start 

repeating &er a millionth place. 

It is possible that a number is rational and irrational at the same time. For example, there 

are fractions that have non-repeating non-terminating decimals, yet they can be 

represented as a/b. 

The first illustration above echoes Ed's reliance on a personal interpretation of "pattern", 

which ignores the requirement for the repetition of digits. The other three responses demonstrate 

participants' dependence on a calculator and preference towards decimal representation, which is 

misinterpreted as either terminating or having no repeating pattern, or treated as ambiguous. The 

last response involves a contradiction in terms ("irrational fractions"), resulting from a warped 

understanding of the two competing definitions of irrational number used in school mathematics. 

These approaches are mostly procedural in their focus on carrying out the operation of 

division or performing conversion, rather than attending to the structure of the given 

representation. It is apparent that the connection between fractions and repeating decimals is not 

recognized. In all these cases the person is prevented from attending to the given transparent 

representation as the ratio of two integers to conclude the number's rationality. The root of the 

problem that causes these conflicts in understanding is a weak or non-existing understanding 

about the interrelations between fractions and repeating decimals. We discuss this issue in 

greater detail in the section on definitions. 

6.2.2 Fractional disposition 

We now consider the reactions of those PSTs that hold a primarily fractional disposition. 
-. 

We consider a person exhibiting fractional disposition as someone who primarily bases hisher 
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understanding of rational number as a number that can be expressed as a ratio of two integers 

with a nonzero denominator, and an irrational number as a number that cannot be expressed in 

this way. Fractionally disposed participants had an advantage in that they automatically 

concluded rationality of common fractions as it was natural for them to attend to the transparent 

feature of number represented in this form. However, some fractionally disposed PSTs had 

difficulty concluding rationality of infinite repeating decimals, beyond simple cases such as 

0.33333.. . Interview with Paul demonstrates this. 

Paul: 

Interviewer: 

Paul: 

Interviewer: 

Paul: 

Interviewer: 

Paul: 

Interviewer: 

Paul: 

(claiming that 0.12 122 1222 12.. . is irrational because its digits go on forever) 

Yeah, okay. So what about if the question was about 0.12121212, like this infinitely, is that 
also, is that a rational or not a rational number? 

I would say it's (pause) not a rational number because it. . .Rational number can be written 
one over the other ... as the ratio of two whole numbers. . 
That's right. So you're saying that 0.121212 with 12 repeating cannot be written as a ratio of 
two whole numbers? 

Hmm, the way I see it is like this, you'd have to go . . (pause) you have, I can't imagine this 
number, I can't imagine 0.121212. . .being multiplied bv anv number to get a whole 
number.. . 
I see, that's the way you think about it, okay. Urn, hmm, interesting point. But how about 
0.3333 repeating, is that rational? 

0.333. . . 
Yeah. . . 
(pause) This, this number 0.333 ... it comes UP like a lot. when, when vou iust do vour 
math. . .over the vears, and I can see it's, when multiulied bv 3, vou get 1. . . 

Among the participants that we interviewed we found only two fractionally disposed. 

Although it may seem that this view would be a more desirable one than the decimal disposition, 

we find that simply having this disposition does not immunize one to erroneous beliefs. 

Rational as a ratio of  two numbers: innorin2 the requirement for integers 

When we speak of probing someone's understanding via a clinical interview then we 

think of the interviewee describing the state of the object of understanding, in this case hisher 
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conception of irrational number, as if it were frozen in time for the duration of the interview. 

However, this is rarely the case, even if much care is taken that no teaching occurs. Interview 

questions provoke the person to perform mental actions on the object of understanding that may 

cause the transforming of this object. This is especially true if the concept is still in its early stage 

of evolution (i.e. when it had certainly not been reified, or condensed, or perhaps not even 

internalized). We suggest that the more embryonic the conception is, the more dramatic this 

"search for equilibration", which manifests as "changing the way one thinks", will be - perhaps 

this instability can even be used as a measure of the stage of concept development. 

In our interview with Anna we witnessed an instance of a dramatic shift in the conceptual 

schema of an individual. When probing her understanding of irrational number, we found out 

about the dangers of operating from an incomplete definition of a rational number as a ratio, 

omitting the essential requirement that it must be a ratio of two integers. When asked about how 

she distinguishes between rational and irrational numbers, this is what Anna offers: 

Anna: Well like I've heard before that, like the way that I was taught in school is how that rational 
numbers can be written as a fraction, and when they're uut into a decimal, they either, 
thev reueat in some way, or else thev terminate and so irrational are all the non- 
reueatine. continuous decimals. 

On the surface we would judge this as a balanced disposition; that is, it would seem that 

Anna would be able to coordinate the two representations as needed. Also, she is successful on 

both, Item 1 and 2. Only later in the interview, after Anna repeatedly makes statements such as 

these: ". . .any number divided by any other number is how, is like where we find our rational 

number", or ". . . an irrational number is never uh the result of an operation that we do, like if the 

operation is dividing, the result wouldn't be, an irrational", we learn that she is missing the 

essential part of the defmition, namely the requirement that the two numbers must be integers. 

She bases all her reasoning on the "nonexistence of a representation as a ratio" as the defining 



characteristic of an irrational; therefore, we would consider this to be a case of fractional 

disposition. In addition, she is entirely focused on the process of division. 

In the excerpt that follows, Anna is considering whether 3& should be rational or 

irrational. There is a conflict - basing her whole argumentation on the interpretation that 

irrationals can never be a result of a division, disregarding that it is meant the division of 

integers, she now thinks that they shouldn't be obtainable by multiplication either. In the written 

part she identified 3 times root 8 as rational and so we inquired why this would be so. 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna : 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

(thinking that 3 root 8 should be rational because "you cannot produce irrationals by 
multiplication") 

What do you mean by produce, like um, how does 3 root 8 um produce, like. . . 
The two operations or actions that we're taking on 8 is taking the square root of it, and then 
multiplying that by 3. 

Okay. . . 
So what I was saying sort of then is that taking, like dividing 12 by 75 would never produce, 
any division, if the operation is operation of division, that will never woduce an 
irrational number. . . 
Okay. . . 

I guess I was thinking that the same thing would consider, but I just don't think that by 
multiplying, like I was saying dividin~ will never give vou an irrational number. . . 
Okay. . . 

Because if vou divide some thin^ bv something else, that means you can put it in a 
fraction, because of what a fraction is, something divided by something. . . 
Right. . . 
But a fraction is also like the inverse of multiplving, kind of in a way, so this is why I 
would say false.. . 
Because? I'm not sure I understand. 

Because I don't think that um anv product can be irrational, just the way I was saying that 
anv auotient can't be irrational, vou can never have an irrational auotient. Now I'm 
thinking vou can never have an irrational product either. 

So, for example, taking a square root of 5 and dividing it by a square root of 2 would that be 
in your opinion a rational or an irrational? 

Oh (laugh) I think that would be rational, yeah. . . 
By your argument . . . 
That the, by the fraction argument, yeah. I just think the fraction areument extends to be 
able to sav that, because a fraction argument produces a auotient right, . . . 
Um hrn. . . 



Anna: So the quotient came from a fraction. so the quotient can never be irrational. . . 
Interviewer: So whatever can be put as a quotient is by default, by definition not irrational. . . 
Anna: Right. 

Interviewer: Okay, how about pi then, because pi is a quotient of, what is it, circumference and diameter. . 
Anna: (laugh) - 
Interviewer: What would you say to that? 

(At this point Anna becomes very confused. She mumbles something, and the fragments of her inaudible speech 
are impossible to discern. All we can gather is that she is desparatly trying to make sense of it all.) 

Interviewer: It's a hard question. . . 
Anna: I know (laugh) 

Interviewer: I'm sorry you have to endure that, but we want to teach . . . 
Anna: So I don't know now. . . 
Interviewer: Did I confuse you about pi now? 

Anna: No, you didn't confuse me, but it is sort of what I had held to be true, like using this whoie 
idea, if pi is a quotient, it pi, which is what circumference over diameter . . . ., is that what it 
is? 

Interviewer: Yeah. . . 
Anna: Then you can reflect, produce it as a fraction, like circumference over diameter is pi, 

that's a fraction, so vou can show pi as a fraction, therefore according to the fraction 
rule it iust destroys mv whole theorv. 

Interviewer: (laughter) What are we going to do now? 

Anna: I don't know. 

Interviewer: Okay, uh, all these things will be completely clear to you, you know, two weeks fiom now, 
when we talk about it in your course. . . 

Anna: That's exciting. 

Compounding the problem of incomplete definition is that fraction is seen as an 

instruction for division, the result of which is the quotient which "can never be irrational". We 

see this as the concept of rational number in the interiorization developmental stage, that is to say 

it is still very much tied to its operational origins. Based on her own conception, Anna is driven 

to conclude that n is rational, and because that cannot be, it "destroys her whole theory", as she 

acknowledges herself. It is interesting that Anna did not run into these inconsistencies before, 

because if she did, she would be forced to adapt her concept image and refine her definition so 

that it would not admit numbers such as n into the set of rationals. We did not question this, but it 
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would be interesting to know how Anna would explain that every irrational p can be written as 

pll - would the fact that we can produce it fiom dividing it by 1 make it rational? Abiding by her 

incomplete definition she would have to conclude that every irrational is rational. In the 

interview with Anna we learned that one has to be aware that what we have access to are only 

symbols and representations (verbal, mostly), and it is hard to know how close or distant the 

conceptions might be fiom their formal counterparts. At first all seemed to be in order, with the 

exception of somewhat loose wording when casting her definitions. However, we did not 

question that in much detail at the onset of the interview, given that she correctly identified the 

numbers in Items 1 and 2. However, as we scratched a little through these symbols and verbal 

representations, we got to the conceptions that were hidden behind. We learned that conceptions 

stemming from the incomplete and unquestioned definition can survive for a very long time 

despite the many contradictions that this may cause. 

6.2.3. Balanced disposition 

A balanced disposition assumes a flexible use of both fractional and decimal 

representation of a number. We consider it the most desirable one. Seven of the 16 PSTs that 

were interviewed demonstrated this disposition. We are interested in how a balanced disposition 

is acquired, and how in manifests. To relate to the reader what we consider a balanced 

disposition, we present an excerpt fiom the interview with Dave. He answered both Items 1 and 

2 correctly, and he had a success of 8 out of 14 correctly classified numbers on Item 6, putting 

him in the midst of Group B. 

Interviewer: How do you distinguish rationals from irrationals? 

Dave: Just the, you know, it's rational if you can write it in the form All3 where A and B are 
integers, and B is not 0, (laugh) but I didn't start using that till like, I saw it in the number 
theory course up here at Math 342. . . 

Interviewer: Oh okay, and in high school what k i d  of notion did you have then? 



Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Um, I think I was told just, you had to be able to write it as a fiaction, that's all. That was the 
definition, like if you can write it as a fiaction then its rational, if not it is irrational. . . 
And when you see a number that is in a decimal form, do you have a way of telling. . . 
Um, in the number theory course we talk about how you can predict like, um, when you see a 
bunch of decimals, there should be a section that repeats and then you can calculate how long 
the section would be and then, it boils down if you see a pattern and it's probably l i e  a 
pattern that repeats, not the one that keeps getting bigger, then it's um rational. 

Okay. Could you tell me what do you think is the connection between the repeating and the 
being able to express it as AIB, what's the connection here? 

Oh, like. . .If you see something repeating and if it's a rational number. . . 
Yes, rational by your definition so that it's possible to express it as A/B, where A and B are 
integers and B is not 0. . . 
What would the connection be, oooh (laugh), good question, um. . . 
Are these two equivalent? Because people use them, yeah people use both of these as 
definitions of a rational number, so I was just wondering, are they two separate definitions, or 
is there a connection between them. . . 
Well I think there wobably would be a connection, but I'm not sure how to describe it, but 
you, if there's something that looks like it's there, it probably is (laugh). I think, like if you 
say yeah, if there is a pattern, there is a very good chance that it would be rational. . . 
Very good chance. . . 
Yeah, (laugh). . . 
But sometimes it might happen that it's not. . 
Yeah, like maybe you just didn't look far enough right, and actually it does repeat or 
something. . 

Oh okay, so if it repeats, you are sure that every time it's going to be a rational number. . 
Pretty sure (laugh), I wouldn't say all the time, I'm not that confident in it, but. . .yeah. . 

Although Dave is able to attend to the transparent properties of a number to conclude its 

rationality or irrationality, regardless of how it is represented, he is unsure of what it is that 

makes the two definitions equivalent. It seems that the number theory course taken at university 

that he refers to aided in his conviction that "almost always" a repeating decimal would be a 

rational number. In our analysis on moving between the two representations, we would consider 

this to be a case of "leap of faith". That is to say, the knowing that a decimal number represents a 

fraction if and only if that decimal number terminates or repeats, is based on some authority and 

not on one's own understanding. We found that all of the 7 interviewees who held a balanced 



disposition held it more or less on the basis of "leap of faith". We wish to point out that 

"balanced" does not necessarily imply the understanding of the connection between fractions and 

decimals; rather, we use the term to describe the situation where both views are employed. In 

fact, we did not find a single PST that would be able to explain the connection between the 

repeating decimals and a ratio of two integers. We analyzed why this is so and we present our 

findings in greater detail in Section 6.3. 

6.2.4 Irrationals and the number line 

The geometric representation of irrational numbers was strangely absent from the concept 

images of many participants. The common conception of real number line appears to be limited 

to rational number line, or even more strictly, to decimal rational number line where only finite 

decimals receive their representations as "points on the number line". This is in agreement with 

the practical experience that finite decimal approximations are both convenient and sufficient, 

which could be the source of these conflicts. 

However, in mathematics there is a theoretical requirement for irrational numbers, for 

example, "completeness" of the real number system is required for calculus. And with irrational 

numbers one is faced with infinite decimal numbers of a special kind - numbers that cannot be 

written down or known fully. On this note, Stewart (1 995) challenges the wisdom of calling 

irrational numbers real; that is, how can something be real if it cannot be even written down 

fully? In this sense, geometric representation should come almost as a relief in the process of 

learning about irrationals. To be able to capture infinite decimals with something finite and 

concrete, and as simple as a point on the number line, even if this is only possible for a certain 

category of irrationals (constructible lengths), should help in taming the difficult notion of 

irrationality. Moreover, the geometric representation of irrational number may well turn out to be 
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a very powerful and indispensable teaching tool for encapsulating a process into an object, 

especially in the case where the learner is on the verge of the reification stage in the development 

of the concept of irrationality. It is both accessible to the learner (required is the knowledge of 

the Pythagorean Theorem) and yet revealing of the idea that to every number there corresponds a 

(single) point on the number line. 

The following table summarizes the results of the written responses to Item 5. 

Response category Number of participants [%I) 

Exact, using Pythagorean Theorem 9 [19.6%] 
Decimal approximation using one or more digits after the 18 [39.2%] 
decimal point 
Very rough approximation, i.e. "between 2 and 3" 6 [13%] 

Other response (for example, using graphs of f(x)= & or 6 [13%] 
f(x) = x2 - 5 ) 
Responses arguing "you can't" 4 [8.7%] 
No response 3 [6.5%] 

Table 5: Quantification of results for Item 5 - Geometric construction ( ~ 4 6 ) :  

The responses fall into five distinct categories: an exact location of the point using the 

knowledge of Pythagorean Theorem, more or less fine decimal approximation, very rough 

approximation (between 2 and 3), responses related to graphing of a related function, and an 

outright claim that this is impossible to do. Next we examine some representatives of each 

category. 

Geometric approaches 

In section 5.2.2 we presented what could be considered a conventional geometric 

approach. Indeed, it appeared in the work of four participants. This is an example of such 

response: 
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a The length of the hypotenuse shown is & . Just rotate the segment so it falls on the number 

line, then move it up on the line (horizontal translation 1 unit to the left). 

Figure 3: Geometric approach to construct & 

Two other valid geometric approaches were found. One of them is a slight variation of 

the previous response. Instead of by construction it uses a "ready made" right triangle with the 

side lengths of 1 and 2. Four participants gave the response such as this. 

a Make the hypotenuse h = 4- = & lie on the number line. 

Figure 4: ~ o c a t i n ~  & by a ''ready-made'' right triangle 



The other valid geometric approach is the familiar spiral of right triangles constructed by 

the successive application of Pythagorean Theorem with one of the legs always equal to 1 and 

the other leg equal to the hypotenuse of the previously constructed triangle. This construction is a 

more generalized version of the conventional geometric approach in the sense that a square root 

of any whole number can be constructed in this way. It might not be the most efficient 

construction, but it spares one from having to think about what two perfect squares add up to the 

required square of the length of the hypotenuse. Only one participant used this approach. 

Figure 5: Construction of & using successive triangles 

Next response is interesting. It seems to involve "eye-balling" of when the partial pieces 

I in square A will make a whole squared unit. 

Area A = Area B, where A is a square. & x & = 5 x 1 



Figure 6:  Locating & by "eye-balling" the areas 

Numerical approaches 

Next we present a range of responses from the written part, arranged by the degree of 

accuracy. Twenty-four participants (over 52%) offered an approach based on the decimal 

expansion of &. We start with those who offered a very rough approximation, and end with 

those who demonstrated a genuine striving for accuracy. 

Some participants circled a "big blob" around the area of expected location and said 

"somewhere around here". 

Therefore, between 2 and 3. 

Somewhere between 2 and 3. I have no idea of the exact location, but it's closer to 2 than to 
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I used my calculator and found that & = 2.23. Also & = 5''. To plot the point I found the 

midpoint between 2 and 3, then between 2 and 2.5, then plotted & roughly at 2.25. 

There are 5 whole numbers between 4 and 9 (perfect squares), and since 5 comes after 4 it 

will be 115 the way between 2 and 3. 

In this response we note an example of 'overgeneralization of linearity' (Matz, 1982), a 

response that stems fiom what can be seen to hold true in linear relationships. In particular, the 

location of 1/5 is said to be obtainable using a linear interpolation between the two neighbouring 

perfect squares. 

Divide the section between 2 and 3 into 10 equal parts, find the two neighbouring tick- 

marks that correspond to just below and just above 5 when squared. Then divide this 

segment into 10 parts and repeat the process until you get better and better 

approximation. 

0 Closest perfect square is 4, & =2 , so it is a little over 2. 

For greater accuracy, we would try more digits. 

2.3 x 2.3 = 5.29 (too high) 

2.2 x 2.2 = 4.84 (too low) 

2.23 x 2.23 = 4.9729 (too low) 

2.24x2.24 = 5.0176 (too high) 

2.238 x 2.238 = 5.008644 (too high) 

2.237 x 2.237 = 5.004169 (still too high) 

2.236 x 2.236 = 4.99696 (too low) 



Function-graph approach 

This type of response was found among three participants. These approaches assume 

what is to be found; that is to say, they assume the availability of an accurate graph, from which 

the required length would be simply read off, instead of finding a way to construct such length. It 

should be noted that one of the three participants who offered this kind of response admitted his 

doubts about the validity of such approach. 

Using functions, such as a sketch of f(x) = x2 - 5 and then looking at the zero of this 

h c t i o n  x2 - 5 = 0. A statement "if my graph is absolutelv accurate, I will find the exact 

location" accompanied this approach. 

Similar as above, only using f(x) = & and then looking at the value of this function at x 

= 5 on the graph (the ordinate distance). 

Impossible? 

Some participants questioned the validity of the assignment. Most likely the word "exact" 

triggered these kinds of responses. 

I don't think you can find the exact location of & looking at the number line because it is a 

huge decimal form number. I do believe there is a way by using calculus, but I'm not sure 

how to do it. 

This is a trick question, as & is irrational, it cannot be placed exactly on the number line, 

because its digits are infinite. 

Can I find the exact location without knowing the rest of m digits? 

- 
You can't. 

Divide on calculator. There is no exact point like that. 



Real number line versus rational number line 

Since only 9 out of 46 prospective teachers (19.6%) were able to locate the & on the 

number line accurately, we investigated what may be the reason for these difficulties. A rather 

striking observation is that the vast majority of participants perceive the number line as a 

rational number line. It turns out that those arguing "you can't" and those that used a more or 

less fine decimal approximation hold this perception. This can be concluded from the interviews 

where we probed for a precise, not approximate, location of 4. Under such demand, all 

participants that previously offered a decimal approximation later concluded it can not be done. 

In other words, the common opinion was that it must be rounded before it can be located. 

Next, we look at a range of responses from the clinical interviews that may shed some 

light on why locating & is perceived to be so problematic. 

(responding to the question about whether 4 can be found on the number line precisely) 

Anna: No, because we don't know the exact value, because .O bigillion numbers ending with 5 is 
smaller than .O bigillion numbers ending with 6. They're two different numbers, right, so 
because it never ends we can never know the exact value. 

Kyra: Yeah, yeah, like you would never be able to finally say okay, this is where it is, because there 
are still more numbers that you're read in^ off your irrational number. But If you're 
using this scale of, you know, 1, between 1 and 2 is 2 cm or something, there's only so much 
precision that you can make with that point that you draw on there, like I can't make it as 
precise as an irrational number or, you know. . . 

Finding the precise location of rational numbers 

From these excerpts it is evident that part of the difficulty lies in the infinite digits. To 

confirm that it is not the irrationality itself, but the fact that there are infinitely many digits in the 

decimal expansion, the interviewer inquired about the precise placement of rational numbers. 

Interviewer: How about 113, can you find the location of 113 on a number line? 
- 

Anna: On a number line? 

Interviewer: Yeah. . . 



Anna: Yeah, it would be, well okay you could divide, 1 divided by 3 and get that standard 0.3 
repeating. . ., oh but that doesn't end either. Okay, (pause) urn, I think because we know that 
the 3 will never change, do we really know, I don't know, because it repeats. Like how do we 
not know that in the one millionth decimal place it's a 4 or something, or 0 or another 
number, I don't know. But because that we assume that 3 repeats always, we can like sort of 
cut it off and round it. 

Interviewer: Does that mean that we can't really find the exact location? 

Anna: No, it's going to be somewhere in between .3 repeated and .3 repeated and then 4. 

Interviewer: Somewhere in between? 

Anna: But, no (laugh) I guess not, because it is a different number, like by stopping the repetition of 
a decimal you're like cutting off its value. Like you're assuming it has a specific value, when 
in actuality it doesn't have, in reality it doesn't. 

Similary, the interview with William suggests that the number line is perceived in a 

limited sense, as containing only terminating decimals. That is to say, the number line is reduced 

to the common ruler as used in everyday life. 

William: I can find approximate position probably, exact position like I'd probably have to round it off 
at some point, and then come up with an approximate position, 0.334, something like that, 
depending on how I could, you want it, let's say you want it accurate to the ten hundredth 
place, a 1 ,000~ place, I would round it off to that place and. . . 

Further in the interview there is a discussion about how this would be done, which leads 

into an inquiry about what it is that makes the breaking of the unit into 10 equal pieces easier 

than breaking it into 3 pieces. 

William: That I know, I can put a ruler there and I know, that's easy. 10 can be done with a ruler, I can 
also do it with the compass.. . (here William tries showing that a unit can be broken into 10 
equal parts using the compass, but does not succeed) . . . I don't know how, but I think there is 
a distinct possibility. The ruler is the simplest, and on ruler you don't see the, let's say 1 cm 
divided into 3 parts, that's again divided into 10 parts. Anytime I have to do that like 3.33, I 
would, I normally approximate, just approximate the 3. . . . 

It should be noted that William's understanding of irrational numbers was one of the 

weakest of all the prospective teachers that we interviewed. It would be very difficult to build the 

concept of irratio-nality fiom William's concept image of rational numbers. Although rational 

approximations are often sufficient for most practical applications, we see this as an extreme 



example of the number line being reduced to an ordinary ruler, where common fractions that 

have infinite repeating decimals seize to exist. 

From numerical to geometric approach 

As noted earlier the most common approach was using decimal approximation. 

Pythagorean Theorem was seldom invoked by the question. We were curious to find out if this is 

just because it did not come to mind at the time the written part was administered, or whether 

there is a deeper issue. It turns out that although the prospective teachers are well acquainted 

with the theorem they would generally use it only for finding the unknown length in a given right 

triangle, and not for the purpose of constructing a desired length. In the excerpt that follows, the 

interviewer prompts Steve to consider a more geometric approach, and even shows how this can 

be done in the case of f i  . 

Interviewer: Okay, and next question. Um, how would you find the exact location of square root of 5 on 
the number line? 

Steve: Okay, so again without using a calculator? 

Interviewer: Yeah, without. 

Steve: Um, what roughly find the, the two closest perfect squares so root 4 is 2, and root 9 is 3, so 
it's going to be somewhere between 2 and 3, so I guess I would then try like 2.2 and multiply 
it together to see whether it's 5, or whether it's lower, so I guess I'd just try different numbers, 
try multiplying different numbers together, and see how close to root 5. . . 

Interviewer: That would be quite tedious without a calculator, right? 

Steve: Yeah, yeah. 

Interviewer: How about a more geometric approach? 

[interviewer introduces the idea of finding& as a hypotenuse of an isosceles right-angle triangle with side of 11 

Steve: Oh okay, oh that's interesting. 

Interviewer: Um hm, so I'm just trying to see if we can also do something geometric to find the exact 
location of square root of 5, because the other method would work perfectly fine, but it would 
be an approximation only and it would be quite tedious. 

Steve: Um hm, um hm, so how can you come up with a square root of 5, um, (pause) 

Interviewer: Always just say, you know, I'll want to skip that. . . 
- 

Steve: Well it's not that I want to skip, it would just take me a long time to think about number 
combinations that come to root 5. . . 
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Interviewer: In what way combinations are you talking about? 

Steve: Well, you know, that works for the 45-45-90 triangle, root 2 does and you know, root 3 can 
work for the 60-30-90, but I'd have to, I guess I'd have to find out a ratio that used root 5. 
Yeah, I couldn't figure out the answer just looking at it. . . It would be really hard for me to do 
without a calculator. 

Upon the prompting, Steve invokes the trigonometric ratios for some commonly used 

right triangles that students are expected to memorize in high school, failing to recognize that 

these trigonometric ratios have been derived using the Pythagorean Theorem in the first place. 

The fact is, only 20% of the participants were able to invoke their knowledge of the theorem in 

order to satisfy the requirement of Item 5. Furthermore, the eliciting questions at the time of the 

interviews still did not draw out or assist in evoking the theorem fiom the participants' concept 

image. 

On this basis, we suggest that the knowledge of the Pythagorean Theorem is an inert kind 

of knowledge for a great majority of our prospective secondary mathematics teachers. We see 

this as a symptom of two general issues surrounding the present state of mathematics education: 

one, the trend of weakening of geometry in school curriculum, and two, the fragmentation of the 

curriculum. For example, the Pythagorean Theorem is commonly taught in Grade 8 in British 

Columbia. At that time it gets its due share of curricular time, perhaps 2 to 5 lessons, and then 

students move on to the next topic. The theorem becomes a dormant piece of knowledge. What is 

more, the common practice is that many results in geometry that could be derived using the 

theorem are not derived at all (just as is the case with our "missing link"). Instead they are being 

presented as ready-made, thus depriving students from making the necessary connections. 

Examples are many. To mention just a few, let us take a look at the so-called "special triangles" 

mentioned by Steve in the interview. They refer to lengths and angles of the frequently used right 

triangles, and they are often presented to students without requiring fiom them that they derive 
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these facts for themselves. These special triangles, which would be best seen as half of the 

equilateral triangle with side length of 1 and half of the unit square with an application of an 

appropriate scaling factor, can be found in textbooks under the headings "30-60-90 property" and 

"45-45-90 property" (Addison-Wesley, Mathematics 10, p. 109). Students are encouraged to 

memorize these "properties", these properties being the side-lengths. Other examples are various 

problems or even general formulas involving distance, area and volume (such as in triangle, . " 

trapezoid, parallelogram, cone, pyramid, and even sphere - which could be derived using the 

method of Archimedes, but would require the use of the Pythagorean Theorem). For example, 

when students learn how to find the area of, say a regular trapeziod, the height of the trapezoid 

would systematically be given instead of asking them to find it first. It is would be interesting to 

know how many students see the Pythagorean Theorem lurking in the equation of a circle, or the 

trigonometric identity sin2 + cos2 = 1. It seems that the constraints of time, textbook, and teacher 

subject matter knowledge do not allow for such luxury. 

In summary, we see the issues discussed above as instances of a larger problem, which 

has been repeatedly identified, namely that of the fragmentation of the curriculum. In other 

words, if the unit of study is, say, volumes of solids, then, in practice, teachers and problems in 

the textbook alike, generally avoid the requirement for application of Pythagorean Theorem. The 

theorem already received its due share in the curriculum, and after that it no longer needs to 

occupy pupil's time or minds. A limited exposure to geometry coupled with such infrequent need 

to apply the theorem may be responsible that the desired approach in responding to the 

construction question was found to be so rare. 



Precise location: What can be gained? 

Among those participants who were able to find the precise location of 4 we found 

there was a sense of security that such number indeed existed. Their understanding seemed much 

more robust. Perhaps we could even say that the availability of a geometric representation aided 

them in the life cycle of concept development towards its final stage of encapsulation. This is in 

contrast with many others who offered the decimal approximation approach, where the number 

was seen as a process, stuck in its making forever. The following excerpt with Stephanie 

exemplifies this view. 

Stephanie: Yeah. Okay, what I am thinking of, because somehow you can build this triangle and this 
triangle exists, this is another interpretation of the irrational number, so this segment 
represents the length of that hypotenuse, represents square root of 5, because this triangle 
exists. So it should be something what is, like we can touch, I don't know. 

Finally, we present an excerpt from the interview with Claire, who communicated to us 

why she thinks teachers should not be satisfied with approximations. 

Claire: 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Now, of course a point does not have dimensions. So on the number line you don't have 
actually the led of the pencil, it's still a dimension, although it's not. So intuitively you can 
say yes, it's there, a number can be represented in this way . . . As an answer, if you have the 
construction with a compass, yes you assume that construction is exact and precise, yes, l2 + 
l2 = 2 and square root of 2 is the exact representation of square root of 2 irrational number, 
not how we are used to say 1.41, which is an estimation, and approximate answer. 

And what do you think is there, what's the importance of us um having a student understand 
this, you know, exact and approximate, when they always work with approximation? What is 
the value for you? Do you t h i i  they should learn about these things? 

I still tend to believe that it's better to work with the exact value, rather than an estimation, 
instead of, I'm the person that I like to speak with the terminology in math, so saying that pi 
is 3.14 ends up, if you don't insist in elementary school in grade 7,8 whatever, saying that it's 
not, it's only estimation of the number, but you explain the pi like being, you know, some, the I 

lengths of the circle and whatever, I t h i i  it's very important the terminology here, to 
understand that they have a specific value. 

Okay. . . 
So I agree with not being careless about this. When it's exact value, it's exact value, when 
it's a rounding of a number, it's a rounding of a number in estimation. 



125 

At some point students need to become aware that there is a distinction between the exact 

value of an irrational number and its rational approximation. We suggest this is better done 

sooner than later (think of Katie, who did not understand the distinction between nand at the 

time of the interview, suggesting that the misconception may remain permanent). As well, 

students need to be aware of the effects of premature substitution of irrational values by their 

rational approximations in partial results during calculations, both in the sense that this 

complicates the calculations and creates problems of cumulative error. It is our contention that 

placing more emphasis on the geometric representation of irrational numbers can aid students in 

two ways. Firstly, they are likely to become more sensitive to the distinction between the 

irrational number and its rational approximation. Secondly, it is likely to help them encapsulate 

the concept of irrationality by drawing their attention to yet another representation of the object 

(point on the number line, an irrational distance from 0) and away from the never-ending process 

of construction in time, as often perceived through the infinite decimal representation. 

6.3 Definitions and coordination of definitions 

As demonstrated in previous section (6.2), transparent features of the given 

representations were often either not recognized or not attended to. We shall argue that the main 

reason for this is that the equivalence of the two definitions of irrational numbers given in school 

mathematics - the nonexistence of representation as a5, where a is an integer and b is a nonzero 

integer and the infinite non-repeating decimal representation - is not recognized. We consider 

this as a missing link that is rooted in understanding of rational numbers, that is, the 
- 

understanding of how and when the division of whole numbers gives rise to repeating decimals, 

and conversely, that every repeating decimal can be represented as a ratio of two integers. With 



this in mind, we examined the role of the two competing definitions in conceptualizing 

irrationality. 

6.3.1 Superficial coordination of  definitions 

As mentioned earlier, only 7 out of the 16 interviewed PSTs exhibited a balanced 

disposition; that is to say, they were able to flexibly use either of the two definitions, depending 

on the situation. From our theoretical perspective, we would say that they attended to the 

transparent features of the given representations. 

Of the other 9 participants that we interviewed, only 2 were identified as fractionally 

disposed (see Section 6.2.2). One was Paul, who held a rather operational view. He could not see 

how "an infinite repeating decimal number could be multiplied by a whole number and give a 

whole-number result", except in the case of 0.3. The other was Anna, who was using an 

incomplete definition. We identified her as ''fractionally disposed" (although we had some 

doubts about it at first) because of her prominent focus on fractional representation - however, it 

was an entirely operational kind of focus (i.e., "division will never produce an irrational 

number"). The remaining 7 participants relied primarily on the decimal representation when 

trying to discern whether a number is irrational or not. 

We assumed that the 7 PSTs who demonstrated a flexible use of both definitions did so 

because they understood their equivalency. This assumption was probed during the clinical 

interviews since on the basis of written responses alone this is impossible to judge. Our 

assumption was challenged time and again during the interviews. We were forced to conclude, 

on the basis of evidence, that the equivalence of the two definitions is not common knowledge 

even among those prospective teachers who displayed a balanced disposition and who performed 



well on the classification tasks, such as Item 6 of the questionnaire. Interview with Erica tells 

another part of the story why this might be so. 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Could you tell me how you understand the difference between rational and irrational 
numbers? 

I just, I know that a rational number is a number that has, it can be expressed as a ratio 
and it has like an, um, a reueatinp definable auantity. Whereas an irrational number is a 
number that can't. be expressed as a ratio, and it has no pattern to it, it's a non- 
repeat in^ decimal, and it has infinite amount of digits. 

Has infkite amount of digits, and rationals, can they have infinite amount of digits too? 

Yes, but thev'd have a pattern or a r e ~ e a t i n ~ ,  a repeating; pattern to them. Pattern is 
not the right word, because their pattern could be non-repeating, so whether thev repeat 
or not. 

So that is the determining factor, whether they repeat or not, or the pattern, which word is 
more important, repeating or pattern? 

Repeating. . . 
Oh okay. And you mentioned that rational numbers can be expressed as a ratio. . . 
Yes. . 
And irrational sometimes? 

An irrational number, can it be as a ratio, um, no it cannot be, it is not a ratio. 

I have heard of a definition of pi that it is a ratio between circumference and diameter, would 
that make pi rational? Because it's a ratio . . . 
No, because pi is irrational, that's (pause) not a ratio of two numbers, a ratio of 2 
factors. I don't know (laugh). 

Okay. Um, maybe we can refine more, a ratio of what, is meant here? 

A ratio of real numbers. 

What is a real number to you? 

Real number is any, (pause) um. . .Well there's 4 classifications of numbers, right, there's the 
urn, there's the numbers that are only the positive whole, positive numbers, then there's the 
real numbers which is both positive and negative numbers, and then there's also the rational 
numbers which can be expressed as a ratio and the irrational numbers that cannot. I keep it in 
my head. . . 
So um, what's the relationship then between real numbers and irrational and rational 
numbers? 

Uh real numbers would include all irrational and rational numbers. . . 

Erica correctly answered both Items 1 and 2; in Item 6 she correctly attributed 8 of the 14 

numbers given (this was the median performance on this item), and she demonstrated a flexible 

use of both definitions. Her relative success can be attributed to the fact that she transcended the 
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verbal obstacle of "pattern" which we discussed earlier - this alone allows for a complete 

success in discriminating rationals from irrationals given their decimal representation. However, 

Erica's definition using the "nonexistence of a ratio" is incomplete. It is missing the essential 

requirement that the two numbers be integers. It echoes the same problem as discussed earlier in 

case of Anna (Section 6.2.2), who eventually was driven to discard her definition after 

concluding .n would have to be rational under her definition. Interestingly, the inconsistencies 

that spring up from harboring this kind of incomplete definition do not seem to prompt the 

person to seek to remedy the situation. It seems that often people just adapt to it (note Erica's 

adjustment of this definition to exclude x), and carry on, most likely believing that mathematics 

really does not make much sense. Although Erica attended to the transparent property and 

recognized 53/83 as rational "because it is a ratio", this alone does not imply that the equivalence 

of the two competing definitions has been recognized. Rather, we would say, it demonstrates a 

kind of opportunistic thinking, which is not concerned that both definitions yield a consistent 

result - as long as the number fits one or the other definition, that definition can be applied to 

conclude rationality or irrationality. Therefore, while on the surface it may seem that a balanced 

disposition presupposes that the equivalence of the two definitions had been recognized, we 

found that this is rarely the case. 

6.3.2 Which o f  the two definitions do PSTs really use? 

While for Erica the recognition of the equivalence of the two definitions was unattainable 

due to incompleteness of one of the definitions, for many others, as shown earlier, it was 

unattainablebecause the concept of rational number had not yet been encapsulated (i.e. a fraction 

is not being seen as a number). Seven of the 16 PSTs that were interviewed relied on the decimal 

representation, and used the corresponding definition exclusively. We believe this is the major 
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reason for the preference of the decimal representation over the fractional when deciding on 

rationality or irrationality of a number. Moreover, if one is to be convinced that the two 

definitions are indeed equivalent, both directions of the missing link must be considered: one, 

that every ratio of two integers is a repeating decimal (taking a broad interpretation of repeating 

decimals, allowing biunique representation, as discussed earlier in section 4.2), and the converse, 

that every repeating decimal is a ratio of two integers. It would seem that the first direction is 

more easily conceived as one commonly experienees how fractions transform into repeating 

decimals as a result of division. However, we found that this type of generalization was rare to 

come across. For example, Ed exhibits that such is indeed the case. 

Ed: It seems like a contradiction (laugh). But how do you know, like how far, like maybe the 
pattern happens and it's harder to see. Like maybe there's something that's, maybe this does 
repeat at some point, I don't know. Yeah, I don't know. . . It could take a million digits 
before it starts repeating. I mean you could devote your life to looking at that and, but how 
does anybody know, I mean why, I don't know.. . 

6.3.3 One direction in the "missing link": from fraction to repeating decimal 

There are three reasons for the difficulty in reaching a general conclusion on why any 

ratio of two integers results in repeating decimal number (taken broadly). The extension of the 

common experience of division of two whole numbers is needed. First, part of the problem, we 

believe, lays in the lack of algorithmic experience with division. Most likely this is because 

calculators become commonly used before this insight is given a chance to develop. Second, 

fractions that have long periods further complicate the issue, as not many people have ever taken 

the time to reach the full expansion of the entire period of such fractions (i.e., lack of experience 

with long periods). Third, the separation into terminating and repeating decimals further 

compounds the issue. While finite decimals are indeed the first kind met, it would be beneficial 

later on to support the acquiring of a perspective that terminating decimals can be seen as 
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repeating decimals, as we indicated earlier. Consequently, there would be no need to consider 

terminating decimals as a separate case, which intuitively people are likely to do. Instead, we 

could point out that terminating decimals are just a special case of repeating decimals. 

Furthermore, most participants could not even tell how one were to know whether a decimal that 

came from a fraction repeated or terminated. Neither could they tell why it should repeat at all. 

Next, we consider the response of Kathryn, after she was being probed on whether 53/83 could 

have a non-repeating non-terminating decimal expansion. 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

Interviewer: 

Kathryn: 

It might not be repeating, but we can't tell fiom, fiom this.. . we could never tell because we 
can never see every single digit in the number and see if it re~eated some millions of 
digits down the line. 

Umhm.. . 
Um, but fiom that information there, um, is it too large to be on the calculator screen, that's 
why it's rounded off at the end? 

I don't know, that's what the calculator shows. . 
Well if that's the number of digits that the calculator screen can hold. . . 
Yeah. . . 
Then I would say, based on that, I would say irrational, but if there was one space left on the 
calculator screen or something like that, then I would say, oh it's a rational number, because it 
terminates. . . 
But you know it comes fiom 53 divided by 83,53183, so it is a ratio of two whole numbers. . . 
Oh, I see what you're saying, yeah. . . 
So what's the connection, like it seems contradictory to some, if you look at this, you would 
say it's rational, but if you look at that you would say it's irrational, so how do you reconcile 
these two sort of different definitions of a rational number . . . 
I don't know, maybe, I know that if it continues on without repeatinp ever, then that is 
definitely an irrational number, so this, I could have this part wrong I guess. That if it can 
be expressed as a ratio of two whole numbers, maybe that's something wrong in my 
understandinp. . . 
So if you had to vote, if you had to put your money on one of those two, which one would 
you choose as a judge, for a rational. . . 
The decimal form. . . 
The repeating or terminating decimal, rather than ratio of two whole numbers. . . 
Urn hm.. . I guess so. 
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Kathryn's response echoes the response of Connie (Section 6.1. l), who admitted that if 

she could see it her way, then it would make sense to say that some numbers can be both rational 

and irrational. However, Kathryn's understanding that the two sets, rational and irrational, are 

exclusive of each other, seems more stable. When challenged to either reconcile the two 

definitions or abandon one of them, Kathryn chooses to stick with the decimal definition. These 

beliefs cannot coexist: that a ratio of two whole numbers can be an infinite non-repeating 

decimal (we cannot know as we cannot see all the decimals), that a ratio of two whole numbers 

represents a rational number, that an infinite non-repeating decimal is irrational, and that a 

number is either rational or irrational but not both. The least stable one of these conceptions is 

forced to leave the arena so that others can exist in harmony. In the age of dominance of 

decimals and calculators, we find the definition of irrational number as a ratio of two integers to 

be the least stable one of these conceptions. 

Leap of faith versus conviction from understanding division 

We did not find a single participant who could explain this direction of the missing link, 

that is, that every division of two whole numbers must yield a repeating decimal. However, it 

should be noted that we found two participants who firmly believed that this must be the case. 

Not because they came to understand the connection, but because they trusted their correct recall 

of both definitions and they believed that in mathematics there is no place for inconsistencies of 

this sort to happen. In these two cases we would say that the equivalence of the two definitions 

was reached not by genuine understanding of the underlying concepts, but by a leap of faith. 

Stephanie, who we found to have the most complete understanding of irrational number of all the 

participants (the only one with perfect performance on Item 6 )  exemplified this kind of rendering 

of the two competing definitions as equivalent via a "leap of faith". 



Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

(considering why 53/83 is rational and what does that have to do with repeating or terminating 
decimals) Because it's a ratio of integers. There is a pattern, it might just be down here, or it 
might be a repeating of 50 digits and you just don't have the whole repeating. . . 
Oh so we just have a partial view because of the calculator display? 

Yes. 

But are you sure this is going to repeat? 

Yes I am. 

What makes you say that? 

Um, (pause) because okay, um, prime numbers, like some rational numbers cut off right, in a 
certain time, but like it's something to do with the prime numbers so it doesn't um. . 
OK. . . 
I don't know, I don't know, it's, anyway I'm pretty sure it will repeat, I'm not, I don't think. . 
But there's no chance it will just keep going randomly? 

No. No. So it might for the fust 300 digits and then start repeating. So. . . 
Is there any way to tell after which digit it will start repeating? 

Not that I know of, probably though . . . 
I talked to someone earlier today and this person told me that it is possible that this keeps 
going without repeating. . . 
Okay. . . 
What would you say to that? 

No I don't t h i i  so, it either terminates or repeats. . . 

Stephanie is sure that the decimals of 53/83 either terminate or repeat, but she does not 

have a mathematical explanation for this. However, her faith is extremely stable, she does not 

need to abandon either of the definitions to assure consistency of her thinking and a flexible 

usage of both definitions. We found this kind of faith very rare. We are not suggesting that 

learners should be able to reproduce the proof instantly. In mathematics we often use the results 

that we have once been convinced of without having to go back to the first principles. However, 

the equivalence of the two definitions together with the reasons for it should be certainly clear to 

a secondary school mathematics teacher. 

- 



6.3.4 Other direction in the "missing link": fiom repeating decimal to fraction 

The converse, that a repeating decimal represents a fraction, was also not commonly 

found in the knowledge repertoire of the participants of this study. Most common responses 

regarding this were: 

It is easy to turn a fraction into a decimal. But there is no easy, general way of turning a decimal 

into a fraction. Looking at a decimal, unless it is a terminating decimal, you cannot tell if 

it is rational or not. 

0.012222.. . is not rational. I cannot think of any two numbers to divide to get that decimal. 

Furthermore, not a single participant was able to reproduce the "symbolic juggling on 

infinite decimals" to show how a repeating decimal can be transformed into a fraction (this 

method is presented in Section 4.2). Often, upon requesting that a repeating decimal number be 

converted into a fraction, we received the outright claim that this cannot be done. Excerpt from 

our interview with Erica exemplifies this view. 

Erica: See it's, I think it's for a student and for me, it's virtually impossible to look at a decimal and 
put it into a &action, like to go that direction. To go fiom a &action to a decimal no problem, 
but to go the other way, is impossible. . . 

Considering the evidence of this study, we find it difficult to justify the teaching of this 

method to students as early as in Grade 7 (for decimals with a single digit repeating) and again in 

Grade 9 (for any repeating decimal), in British Columbia. Although the intention behind the 

inclusion of this juggling method in the curriculum is probably just to convince students that 

every repeating decimal can be turned into a fraction, we maintain that it hardly serves the 

purpose. Amongst the participants of this study, we found only three individuals who believed 

that every repeating decimal can be represented as a fraction. Again, this belief was largely based 

on faith in the consistency of mathematics and not on the actual ability to perform this 
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conversion. Interview with Claire, who was one of the best students, reveals that although she 

trusts that any repeating decimal can be transformed into a fraction, she does not believe this can 

be done using elementary mathematics. 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

So, so okay, so if you see a number that does have a infinite repeating decimals, can you at 
least say fiom that, that it can always be turned into such a representation as A/B? 

Yeah if you know different, yeah you can, you can turn it in different ways, knowing rules, or 
doing different things yeah. 

As long as you have infinite repeating decimals, you say then it's for sure you can turn it into 
a fi-action form? 

No I can't. . . 
Then no? But if there's a repeating you can do it, right? 

Yeah, if it's like that, um, and, you know continues and continues forever, I can't, I cannot. 
Probablv with more calculus. who knows, I forgot all that. 

Calculus ? 

Yeah I was thinking if you rewrite it like um, infinite urn, (pause) infinite something, let's see 
what happens, no I don't want to think so far. I want to put mvself in the skin of the 
student. . 

In our assessment of the accessibility, portability and transferability of the knowledge of 

this symbolic juggling, we found that more than anything it tends to leave people mystified and it 

is difficult to retrieve. Even the very best students could not remember or use the method despite 

having been exposed to it. On top of this, they see no practical benefit for knowing it; that is to 

say, it in not perceived as critical piece of knowledge for the development of further concepts. 

We argue that if the very best amongst the prospective teachers in our study could not recall or 

make use of this method, and if the exposure to this method did not succeed in establishing the 

converse direction in the "missing link", then we are safe to conclude that it does not serve the 

intended function. We now present the excerpts from interviews with Dave and Stephanie, who 

were the only two interviewees that had any reference at all to the method of symbolic juggling 

performed on infinite decimals. 



Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

(considering the question on how we can know that every infinite repeating decimal has a 
representation as ah where a, b are integers, and b is nonzero). . . 

Yeah, yeah, ftom what I remember, like if I remember correctly from my number theory 
course, like the repeating part will, it doesn't matter where it starts, as long as there is one. . . 
I remember um our professor, he, like say there's a decimal then a bunch of random, looks 
like random numbers and then the pattern, he was able to do it, to convert it to a hction. . . 
Okay, every time? 

Yeah pretty, yeah pretty, like for examples he had, you could do it, like it took, I remember I 
did some work and I couldn't really understand how he did it, like I followed it, but I 
couldn't remember. . . 

Yeah. . . 
But I didn't look at it long enough to really learn what he was doing, I just go okay, it works, I 
wasn't, because I was thinking oh. after this course, you know, I'm not going to use this 
too often. I couldn't see it beinp applied to anything, except for, and just doing those kind 
of problems, although I thought they were very interesting, because it took a while for the 
brain power to try to make sense of it (laugh), so. . . 

For Dave the method of symbolic juggling on infinite repeating decimals succeeded in 

convincing him that every repeating decimal can be represented as a ratio. His understanding is 

more robust and it does not suffer fiom the instability caused by the "missing link". In his reply 

we note that he had been recently exposed to this method in his number theory course at the 

university. We wonder what is the benefit, and the cost, of exposing middle school and high 

school students to it. Similarly, the only other participant who had any reference to the method, 

Stephanie, was also a recent mathematics major graduate in the honors program. She referred to 

the method as a "trick", and could not reproduce it either; however, the "trick" did the job of 

convincing her that every repeating decimal can be transformed into a fraction. 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Interviewer: 

Stephanie: 

Why repeating, what's so special about repeating? 

Um, it helps us put them in a ratio, if digits repeat, we can manipulate them and put into a 
ratio of integers which is a rational number. 

How, is there a technique or something that you are referring to? 

Um, uh there's a technique, I know they teach it in grade 10 or 11 or something and you can 
manipulate it in some way, but um, that's. . . yeah and it doesn't matter where it starts 
repeating, as long as it would repeat. 

Any number that repeats can be manipulated in that way and put into a ratio? 

Well there's a trick that you can show that it is a ratio of integers ... 



As mentioned, out of the 16 PSTs that we interviewed, Stephanie, Dave, and Claire were 

the only ones for whom the missing link did not present a significant conflict in understanding 

the equivalence of the two definitions. Either there was a trust that the two definitions must give 

a consistent result, or they had been convinced by the juggling method sometime in the recent 

past, as university students. 

Undoubtedly, the quality and depth of understanding are affected if the equivalence of the 

two definitions and the reasons for it are not recognized. When directly confronted with the 

issue, the majority of PSTs' recognized that their notions of these matters are inextricably 

muddled. We present Kyra's response, provoked by drawing her explicit attention to the problem 

of the "missing link". 

Kyra: Umrn, I just thought like, by saying that a rational can be expressed as a fiaction means or 
implies that every rational is a quotient, right, it's the answer of something divided by 
something else. And it's just really difficult for kids to go back, or take a quotient and find 
out what the two dividends would have been, so I t h i i  that's why we use the second criteria, 
but I have no idea who figured that out, or why that rule, does that rule support the other one. 
Is there proof. . . 

Interviewer: Does it always support it? 

Kyra: And that's something I've, yeah, I have never even considered it. 

6.3.5 Confronting the two definitions: exposing the "missinn link " 

It is interesting to note that people can pass largely unaware of the problem of the 

"missing link", particularly if they have a balanced disposition. This is probably the best possible 

outcome of the present didactical choice - to have people fluently use either of the definitions as 

the situation warrants, never questioning their equivalency. In the next excerpt, we present 

Erica's confrontation with the "missing link", provoked by the use of an interviewing technique 

referred to as the "probing of the strength of belief' (Ginsburg, 1997). 

Interviewer: Um, you know, I talked to someone else before, and this question on, you know consider 
53/83, and let's call this quotient M, and then when we enter it into the calculator display, this 



Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

is what we see. Do you thii that it terminates here or there's more, but we just don't see it 
because of the limited calculator display? 

Um, (pause) I think, rational or irrational explain, well I said it was rational because it's a 
ratio. I'm, I don't know whether I even considered whether it terminates or not. Which 
means mv definitions aren't verv strong, are they. Um, yeah, I don't know. If it, looking 
at again, if it terminates then I would say that it's a rational number, but if it doesn't and it 
doesn't repeat, then it would be considered an irrational number. 

See I had a student who had similar kind of reasoning, he said um, this, he believed, 
continues, and it doesn't show any repeats so this decimal, in his opinion, would be, you 
know, what he has as a defmition of irrational number, yet 53/83 looking at another definition 
of what a rational number is, would be considered rational, so he said well there are some 
numbers obviously, that can be both, rational and irrational, I mean both at the same time. 
They can be rational and irrational, do you think that it is possible. . . 
(laugh) So I t h i i  mv definition mavbe isn't clear, um, because that, my understanding is, 
it's either going to be a rational number or an irrational number, not both. . . 
So it can't be both. . 
So I would say that this would be an example of my definition not being strong enough for 
either one. Um, so maybe my understanding of one or the other isn't correct, because 
obviously there needs to be some way of deciding. . . 
One or the other, what do you mean by one or the other. . . 
Rational or irrational, like my definition of what I, how I define a rational number or an 
irrational number is not complete perhaps, which is why I'm not identifying, like, because 
if I simply say a rational number is any number that's a ratio, yet a ratio can give a number 
that has a non-re~eatinp decimal and I say a non-repeating decimal is irrational. There's 
got to be some thin^ else that's going to distinguish between the two, because otherwise 
it's going to overlap too much, so I'm thinkinp that mv definition is missing a part, rather 
than say that some are both, is my fence. 

As discussed earlier, Erica's definition is indeed incomplete (missing the requirement that 

the ratio be a ratio of integers), but that does not prevent her from identifymg common fractions 

as rational numbers. Only after her attention is drawn to the conflicts arising under the condition 

of an unresolved "missing link", her mathematical notions of rational and irrational numbers are 

cast into shades of doubt. While Erica experienced this consciously, we believe a similar kind of 

insecurity is experienced subconsciously in many learners. What is more, we believe that this 

problem could be avoided, or at least reduced to a lesser extent by a more prudent didactical 

choice. 



6.3.6 Equivalence o f  the two definitions is not obvious 

Interview is indeed a special situation where the mind is extremely active, in contrast 

with the classroom situation where "students tend to be passive in their processes of 

understanding, taking things as they are, solving problems as they are given, often strictly 

following some model solution, never asking themselves questions that are not already in the 

book" (Sierpinska, 1991, p. 103). In some cases, the interview can be seen as a simulation of a 

learning situation at its best. If an individual is unable to make the relevant connections right 

then and there, independently, then we are safe to assume that these crucial connections are even 

less likely to happen in a classroom situation. Instead, they should be taught explicitly. They are 

clearly not obvious. Such is the case of the "missing link", the part of understanding that allows 

the learner to see why the two definitions are equivalent. We suggest that the "missing link" is 

the major cause for many of the cognitive obstacles we witnessed in prospective teachers' 

understanding of irrational numbers. 

As shown, there is a conflict between concepts of "fraction" and "decimal" in the vast 

majority of PSTs preventing them from building an understanding, such that there exist smooth 

paths linking one thought to another without the stress and instability. As demonstrated, this 

serious cognitive conflict caused by the "missing link" is unlikely to get resolved on its own. Our 

argumentation is based on the assumption that in the process of mathematical learning, there are 

certain concepts that either need to be taught explicitly, without black-boxes and short-cuts, or 

not cast upon students at all. The "missing link" is presented here as one such area in the 

curriculum. According to Tall, 
- 

"Most of the mathematics met in secondary school consists of sophisticated ideas conceived by 

intelligent adults translated into suitable form to teach to developing children. This translation 

process contains two opposing dangers. On the one hand, taking a subtle high level concept and 



talking it down can mean the loss of precision and an actual increase in conceptual difficulty. On 

the other, the informal language of the translation may contain unintended shades of colloquial 

meaning." (Tall, 1978) 

In Chapter 8 we present some ideas on how to link the two interpretations of irrationals 

with aim of supporting a balanced and connected perception. 



CHAPTER 7 

Results and Analysis of Intuitive Knowledge 

In the same way that it is impossible to conceive of mathematics deprived of its 

theoretical organization (axioms, definitions and theorems), so one cannot conceive of a theory 

devoid of intuitive meaning (ideas, models). Often theory and intuition are distant, conflicting, 

and difficult to reconcile. This report is a story of the ingenious ways in which participants strive 

to harmonize their intuitions with what they formally know to be true. 

In this chapter we focus on the results and analysis fiom the perspective of intuitive 

dimension of knowledge. We examined the prospective secondary teachers' intuitions and 

beliefs regarding the relations between the two sets, rational and irrational, such as density, 

richness, and how numbers fit together, as well as the operations between members of these sets. 

In our analysis of the participants' intuitions of these notions, we detected various 

inconsistencies in relation to the other two dimensions of knowledge, algorithmic and formal. 

These inconsistencies are often revealing of misconceptions, cognitive obstacles, and other 

common difficulties; as such, our goal here is to describe them and to attempt to identify their 

sources. 

7.1 Intuitions on richness and density 

First, we explore PSTs' beliefs about the relative "sizes" of the two infinite sets. What 

kind of mental images are used to tackle the questions about the abundance and density of 

rational versus irrational numbers? Participants' intuitions about the order of infinity of rational 
- 

numbers versus irrational numbers (denumerable versus non-denumerable set) were investigated 

using Items 3 and 4. The tables below show the quantitative summary of written responses. 



1 Response category Number of participants 1 I 
Irrationals 22 [47.8] 
Neither 11 r23.91 
Rationals 10 [21.8] 
Other (not s~ecified or no answer) 3 (6.51 

Table 6: Quantification of results for Item 3 -what set is "richer", rationals or irrationals ... (n=46). 

the set of real numbers, we designed the following two closely related items: 

What is the probability of getting a rational number? 

I Response category Number of participants [%I 
I 

"Equal to 0" 12 14.31 
"Close to 0" 9 [19.6] 
"Close or equal to 50%" 10 [21.7] 
"Close or equal to 100% 8 [17.4] 
"Undefined" 1 L2.4 

I No answer 1 16 [43.8] 1 
Table 7: Quantification of results for Item 4 -probability of picking a rational number fiom [O, 11 interval. (n=46). 

7.1.1 Intuitions regarding the abundance o f  irrational numbers 

Next we present a collection of written responses to Items 3 and 4, categorized according 

to the proximity of the intuitive reasoning to formal results. 

Irrationals are much richer than rationals 

These are some examples of responses fiom the written questionnaire that came the 

closest to the formal theory of cardinal sets: 
- 
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Irrationals are richer, because they are not countable while rationals are a countable set. 

Bijection exists between integers and rationals; bijection does not exist between integers and 

irrationals. 

Irrational numbers are richer. Since every irrational number has an infinite number of digits, 

there are many more possible irrational numbers. For example, a number that is 100 digits 

long can be rearranged to form 10lo0 numbers. 

In the next excerpt, we present Ed's response. We find it interesting because he arrives 

very close to the correct result without any reference to the formal theory of cardinal sets. 

Interviewer: You say that you think that irrationals are richer, meaning we have more of irrationals, how 
can you justify that thinking. 

Ed: Because there's always going to be more, if, if you were to just take random digits, but 
anywhere, and uull them out of a hat, like whatever, chances are those numbers, like say up 
to 1,000 digits or whatever, chances are those numbers are e o i n ~  to have no pattern, 
there's much bigger chance. Like if you think about it, there's no way you're going to, of 
course you're occasionally going to get one that has an exact pattern, but that's less likely, it's 
just in nature, in your environment, you do see more rational numbers then irrational numbers. 
But in the actual numbers themselves, if you, there's probably, in my opinion how I think of 
it, there'd probably be way more irrationals. 

From Ed we learned that it is possible to intuitively know that there are many more 

irrationals without ever having seen Cantor's diagonalization proofs or knowing about the 

possibility of infinities of different order. Of course, this simple and intuitively sound reasoning 

is more likely to occur in those who see irrationals primarily as infinite non-repeating decimals. 

As mentioned earlier, Ed displayed an accentuated decimal disposition, which seems to have 

contributed in devising this type of reasoning to show that the number of irrationals must be far 

greater than the number of rationals. 

Note that there is an inconsistency between participants' responses in this category across 

Item 3 and Item 4. On Item 3,22 people claimed that irrationals are "richer," yet only eleven 

people maintained that the probability of picking a rational number at random from the given 



143 

interval was equal or close to zero. Looking at the written data, we see that many of the PSTs 

who said that irrationals are richer abstained fiom answering Item 4 altogether. We interpret that 

this pattern of responses is indicative of having heard that irrationals are much more abundant 

than rational numbers without having an understanding of why this may be. When probed more 

deeply as to how much more abundant, some PSTs could not to respond. 

Arguments revealing misconceptions 

Some people see rationals as terminating decimals and consequently claim that the 

probability of picking a rational is very low, close to 0. This misconception was already 

described in detail in previous chapter, and we will not dwell on it here. However, it may be 

related to another misconception that was exposed in response to these items, namely that there 

is a finite number of rationals. The following are some responses to Item 4 in the written 

questionnaire. Though the decision of which set is richer is correct, the reasoning is flawed. 

Probability of picking a rational is 0 because we have an infinite number of irrationals 

between 0 and 1, but we only have a finite number of rationals. 

There is a finite number of rationals but an infinite number of irrationals, so the probability 

of getting a rational is very, very low. 

Rational numbers are defined as a number with a ratio. It seems there would be a finite 

amount of rational numbers and an infinite number of irrational numbers. Probability of 

getting a rational number is very small - say 1%. 

If the probability of picking any number is lloo , the probability of picking any rational 

number would have to be (all the rational numbers)/oo , which is very small because anything 

divided by oo is very small. 
- 



The misconception lurking from the first three responses came as a surprise to us. It is 

obvious to everyone, even from a very early age on, that there are infinitely many natural 

numbers. It is also well known, even to most high school students, that natural numbers are a 

subset of rational numbers. In light of this, the thinking that there is a finite number of rationals 

seems absurd; however, we propose a hypothesis that needs to be examine in further research 

that this thinking may be the result of advanced mathematical training when the required 

background is missing. We see it as an individual's abandonment of common sense and that 

which would seem intuitively obvious in order to accommodate higher knowledge, especially if 

this knowledge is counterintuitive. This misconception, we believe, may have developed in these 

individuals as a consequence of exposure to cardinal infinities, in a situation where the 

underlying conceptions of rational, irrational and real number were underdeveloped at the time to 

begin with. Moreover, it could hardly be said that this misconception was an isolated case. We 

came upon it several times, both in the written responses as well as in the interviews. However, it 

is not clear for every participant whether it applied to rational numbers in general or specifically 

to the interval [0,1]. This topic is discussed further in at the end of this section. 

Arguments involving mapping 

In this category we placed intuitive responses that involve a mapping using either the 

operation of addition or multiplication to transform every rational number into an irrational 

number. This is intended to show that the set of irrationals is richer. Here are some examples. 

Irrationals are richer. If we take each element of Q and add f i  to each, all of those numbers 

are irrational. Then we could take each element of Q and add n to it. Already we have twice 

the amount of irrationals as rationals. We could do this forever, so the set of irrationals is 
- 

much richer. 
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Irrationals are richer because all irrational x rational = irrational (eg. =irrat, 2 =inat, 

3 & =irrat, , . .). 

Although these intuitions lead to a correct conclusion, they are not formally correct, 

unless it is already known that the set of irrationals in nondenumerable. Instead, these arguments 

seem to imply that KO x KO ;t KO which is not the case according to the proof of denumerability of 

the set of rational numbers. These responses reflect the application of finite experience to infinite 

sets, in particular that part is smaller than the whole or that infinity plus infinity is twice as large 

as the original infinity. In the interview with Dave, who is responding to how he knows that the 

set if irrational numbers is richer than the set of rational numbers, we see an example of this 

additional view. 

Dave: So what I did was, in order to, like I could, I could take um one irrational number and I could 
add all of the rational numbers to it one at a time so I could have like pi plus 1, pi plus 2, pi 
plus 4, and I would have some set of numbers that has the same cardinality as the rationals. 
Then I can take another irrational number, like root 5 and add again all the rational numbers 
to it, so right there we got twice as many irrationals as rational numbers, so I can continue to 
do that with all of the irrational numbers that I can possibly think of. As well, um, no that's 
pretty much it. . 

We found only two instances of this particular approach. Although it is not indicative of 

the knowledge of cardinal sets, we found it to appear only in those participants whose notion of 

number was at a rather mature developmental stage where it could be conceived not only 

operationally but also structurally. 

Vame arguments 

This category of responses we found difficult to interpret, yet they are correct. 

Irrationals are richer. They fill in all the "gaps" on the number line. 

Irrationals are richer - because of all the other figures out there (log, In, e, sin, cos) 
- 
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The two sets are equally abundant 

The most common response in Item 4 was that the two sets are equally abundant. About 

the same number of people chose that neither of the two sets is richer in Item 3. From looking at 

individual questionnaires, we see the consistency of this belief across both items. In the 

following list, we present some common justifications for this response: 

I think there is an infinite number of rationals and an infinite number of irrationals. You can't 

have one infinity greater than other infinity. So both sets are equally rich! 

Since we have an idinite number of both, neither is "richer". 

Neither is richer. There are infinite number of rationals and irrationals. 

For every rational there will be an irrational to follow, so the probability of picking a rational 

is equal to 50%. 

Probability of picking a rational is 1 in 2. For every rational number there is an irrational. 

The intuition that there should be one irrational number for each rational number, as if the 

numbers were nicely packed like that, following this kind of order on the number line, was 

detected again in responding to the items on how numbers fit together. A more detailed analysis 

of these intuitions is presented in the next section. However, it is interesting to note that we 

found the belief that the two sets have equal cardinality among some of the very best PSTs in the 

group. We suggest that this is the most natural intuition, and that it is mast likely the most 

common belief before one is exposed to the theory of cardinal sets. Moreover, it is likely that 

even those with basic familiarity with different infinities tend to fall back to their naive intuition 

after some time of not having much use for this knowledge. We found this to be the case in two 

of the participants that we interviewed. Finally, for the purpose of secondary school teaching, the 
- 

knowledge of cardinalities of infinite sets does not seem to be very applicable. We would agree 



with Claire that it would be appropriate if high school students knew nothing about infinities of 

various kinds, as this can be very confusing for children and even for adults. 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Interviewer: 

Claire: 

Which ones do you think we have more of, rationals or irrationals? 

Okay, my opinion is that none, if you give to a student, but we discussed a little bit about that, 
and I remember that indeed I did in some of my algebra, not calculus, I did in my algebra 
course it's something with the numerable and not numerable. . . 

Urn hm, ... 
Yeah, countable, here we call them numerable and not numerable, larger, little bit, or, and 
yeah I remember something that irrational are, but I cannot tell to a student, so I think for a 
student, if I can explain they are going on and on and on forever that infinity, which you 
cannot reach it, it's somewhere there like a symbol, because even in a high school level of 
calculus, saying that infinite plus infinite is still infinite, how can you decide which is larger, 
you understand what I am saying. . . 
Um hm, yeah. . . 
So I would stop with that and say okay, infinite. . . 
Yeah, we are just exploring your intuition about this, you know, it's not something that we 
teach in high school, definitely not. 

Yeah and I would tell them only yeah, you go on and on, you cannot reach it, you cannot say 
that one is richer. How much richer? Because if you tell them it's richer, they will ask you by 
how much richer, and how can you explain to them that those numbers, no they understand 
sometimes that, that the real number, for example, are richer than, and I'm not sure now it 
came to me, I'm not sure, I think we learned about rational numbers, those are countable, I'm 
not quite sure, numerable, rational, and real or not, something like that. So far away, I cannot 
remember. 

In passing, we noticed that Claire frequently talks about her potential students as if her 

personal knowledge is irrelevant beyond what there is to teach. It is possible that some teachers 

resort to this behaviour as a defense for what they perceive as a deficiency within their own 

understanding. 

Rationals are more abundant 

The response that rationals are more abundant was quite consistent across both Item 3 

and Item 4. In the following list, we present some common reasonings. 

Rational set is richer. Because any integer divided by another integer repeats and is 

rational. Each integer can be divided by infinitely many other integers. 



Rationals are richer. Because I cannot remember many numbers similar to x. 

The chance of picking a rational number is pretty good, since some numbers that 

seem like irrational numbers can be written as rational numbers. 

Wouldn't all the numbers between 0 and 1 be rational? Probability of choosing a 

rational is 1. 

Aren't we choosing a fraction every time? Probability is 100%. 

Probability is 100% because I don't know of many numbers like Pi. 

In the interview, Amy initially expressed the belief that all numbers in the given interval 

should be rational, but soon rectified this view upon finding the evidence that it could not be so. 

We find it interesting that she accessed the fact that there are some irrational numbers in the 

interval not by considering the decimal representation but rather by considering a symbolic 

representation. 

Interviewer: If you pick at random a number on the closed interval 0 to 1, what is the probability that you 
will pick a rational number? 

Amy: Any number I get, I would say (pause) 1, I would say any number is rational. . . 
Interviewer: Any number is rational, so you would say there are no irrational numbers on an interval 

between 0 and 1. . . 

Amy: Mmm.. . (pause) It should be because I would say square rod  of 2 divided by 2 is between 0, 
no it's not, square root of 2 divided by, yes it is, it is, . . . 

Interviewer: So there are a few, you would say there are some irrational numbers, but there's way more 
rational numbers, is that your intuition? 

Amy: 0 and 1, lots, lots of numbers, rational numbers and in between each of them we can find 
again and again and again more rational numbers. But square root of 2 divided by 2 is there 
too.. . 

Interviewer: So would you change your answer now? 

Amy: I would say yes. I have to, now I'm interested in, you know, about irrational and rational 
numbers. 

- 

Unclassified responses 

There were some responses that could not be fitted into any of the above themes but we 

include them in the list below for completeness. 



I don't think anybody knows which set is richer. 

I would imagine that we have quite a few of both types of numbers. 

7.1.2 Summary o f  intuitions on richness and densitv 

As we can see, in Item 3 almost half of the PSTs identified irrationals as the richer of the 

two sets. Yet, in Item 4 we note an inconsistently large drop in the corresponding response 

category. In addition, over 40% of participants provided no response to this item. Only about a 

quarter of PSTs declared that the probability of picking a rational number on the interval [0,1] is 

0 or close to 0. It is possible that this drop occurred as a result of insecurity in this belief, or it 

may have had something to do with the limited interval. Furthermore, we believe that the correct 

response is more often a result of natural intuitive reasoning, such as Ed's, than a result of 

advanced training and formal exposure to cardinal infinities. This is not to say that the 

participants of this study did not have the formal exposure to these concepts in their background, 

but only that, for the most part, they did not bring this knowledge into the foreground in any 

notable way. In addition, as noted earlier, many of the "correct" responses were found to be 

incidental, due to a misconception. 

Although many PSTs who responded that the set of irrationals is richer did not justify 

their thinking (15), of those that did (7), only three made an explicit reference to denumerable 

and non-denumerable infinities, either in the written response or during the interview, whereas 

the rest of them used informal intuitive reasoning to justify their choice. Three of the 7 PSTs who 

responded that irrationals are more abundant than rationals and also justified their choice, did so 

for incorrect reasons, such as "irrationals have infinite decimal expansions, while rationals are 

finite decimals - this means there are infinitely many irrationals and only finitely many 

rationals". 
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Nearly one quarter of the participants of this study had no knowledge about the two 

degrees of infinity and consequently claimed the two sets should be equally rich. Of those, many 

argued that both sets are infinite, and that "you can't have one infinity greater than another". 

Furthermore, about a fifth of the participants of our study were not aware of the existence 

of irrational numbers beyond a, e, and some commonly seen square roots. Although many PSTs 

abstained from answering Item 4, there was a much greater consistency between the two items 

with respect to later two response categories, namely that the two sets are approximately equal in 

size, or that there are very few irrational numbers, if any, on the interval [0,1]. It seems that 

intuitions and beliefs of participants who fall into one of these categories are more resistant. That 

is to say, these participants who either expressed the view of equal cardinality, or thought that 

rational numbers by far outnumber the irrationals, were much more likely to sustain the same 

belief across both items in comparison to those who expressed an opposing view. 

7.2 Intuitions regarding the fitting of numbers 

We looked at participants' intuitions about how the rational and irrational numbers fit 

together (i.e. the idea of continuity of the set of reds achieved by the "completeness" axiom). 

How do they reconcile the fact that rational numbers are everywhere dense, that is, between any 

two rationals, no matter how close they may be, there are infinitely many rational numbers, and 

yet it is still possible to fit the irrational numbers amongst them. 

We present our analysis of the responses related to the questions (e), (9, (g), and (h) of 

Item 7. These questions were designed to investigate both PSTs' intuitive models and their 
- 

formal knowledge about number concepts and relations between members of the two infinite 

sets, in particular how rational and irrational numbers fit together. As noted in Section 5.2.4., we 

anticipated to investigate participants' knowledge as the tools for a correct derivation were 
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accessible to everyone. However, the answers were mostly intuitively based so our analysis 

focuses on participants' intuitive models. Next we present the quantification of the responses 

(shaded fields signal correct responses). 

Part of Item 7: 

Determine whether the claim is true (T) of false (F) and explain your thinking. 

Table 8: Quantification of responses to Item 7: e,f,g,h - how numbers fit together. (n=46). 

Item 

Although majority of the participants correctly responded to all these questions, we see 

this majority is marginal for items (e) and (h). What we find very interesting here is that as much 

as one quarter of the participants expressed a belief that there are some closest irrational numbers 

such that no rational number could be found between them. In one of the interviews a participant 

referred to "consecutive irrationals" to describe his idea of the absence of gaps between irrational 
- 

numbers. Even more interesting is the unexpectedly high frequency of belief that there exist 

some closest two rational numbers, such that no other rational number could be found in 

between. More than one fifth of the participants expressed this view, while over a quarter of 

False [%I True [%I No answer [%I 



them abstained from answering this question altogether. With this fact being so elementary, and 

the proof of it being so within reach, especially for this group of participants given their 

educational background, we wanted to find an explanation for this. Possible source of error is 

presented in the excerpt fiom the interview with Erica below. 

It should be noted that amongst those who answered question (h) correctly, there were 

very few (4) who either used a general symbolic argument or verbalized that the "arithmetic 

mean of two rationals is also rational". Most of the explanations provided by PSTs relied almost 

entirely on the decimal representation of numbers. This was prominent across all four items, as 

can be seen fiom the following collection of justifications. We present both those explanations 

that are mathematically valid and those that are not. 

7.2.1 Justifications inconsistent with the formal dimension o f  knowledne 

Between at least some rational numbers there are only irrational ones. This must be the case 

because there are many more irrational than rational numbers. 

There aren't as many rationals - irrationals fill in the gaps between rationals (justification for 

why (h) should be False). 

Irrational numbers are so dense, you can find two that do not have a rational in between. 

Spaces between irrational numbers can be infinitely small. 

There will be two irrational numbers that are closest to one another. 

I believe numbers alternate: rational, irrational, rational, irrational, . . . So there will be some 

closest rational numbers where only an irrational will be found. Similarly, between any two 

closest irrationals, you'd find a rational, not an irrational. 

Two non-patterned decimals can exist without a number that has a pattern existing between 

them. The two irrational numbers can be very close, but not the same. 



7.2.2 Justifications consistent with the formal dimension of  knowledge 

You can always find an irrational between two irrationals because you could change the last 

little bit to make a new number between the two given ones. 

Let a, b € Irrational and afb. There must exist (a+b)/2 which could be rounded to some 

nearby rational number so that this number would fall between a and b. 

If two rational numbers exist then there is certainly a midpoint between them, which would 

be found by adding the numbers and dividing by 2. This yields a rational number. 

I can easily generate another ratio between two ratios. 

You can find a rational number between any two irrationals by terminating the decimal 

expansion of the larger number such that you create a number bigger than one and smaller 

than the other. 

There should always be a terminating decimal between any two infinite non-repeating 

decimals. 

It is always possible to find an irrational number between any two rationals: just expand the 

decimal expansion so that it neither terminates or repeats and it is bigger than one and 

smaller than the other. 

In examining the participants' justifications, we found several cases where an example 

was shown, and then on the basis of this example a claim was made that the statement is always 

true, that is, for any such pair of numbers. For example, one of the participants in response to 

whether it is always possible to find a rational number between any to irrational numbers, wrote 

"Take f i  =: 1.414 and =: 1.732 ; in between there is 1.6 =I6110 , i.e. can be written in form 

m/n where n#O; therefore this statement is True". The same individual also believes that it is 

always possible to find an irrational number between any two rational numbers, because 
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"between 1 and 2 there is 6, & and between 2 and 3 there are 16, & , 8, & ". This kind 

of non-mathematical argumentation, attempting to reach a generalized statement on the basis of a 

few cases, was found amongst three participants. It is possible that these individuals 

misinterpreted the questions, ignoring the requirements for "always" and "any". 

In the following passage, let us consider an excerpt from the interview with Erica, that 

may help explain the unexpected discrepancy in questions (e) and (h) mentioned earlier. Erica 

was one of the participants who held the belief that there are finitely many rationals and 

infinitely many irrationals. We interpret this belief as a distorted remnant of her encounter with 

the theory of cardinal infinities; in particular, we see it as the confusion between denumerable set 

and finite set, and between non-denumerable set and infinite set. She changed her mind as the 

interview unfolded. This was likely due to the stimulus arising from the questions, giving her a 

chance to rethink the absurdity of maintaining that the set of rationals were finite in size. Still, in 

the end she is left puzzled, but certainly equipped to resolve the conflict. 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

- 

Interviewer: 

Erica: 

How about this, is it always possible to find a rational number between any two irrational 
numbers? 

No.. . 
So, sometimes not? 

Sometimes not. . . 
Can you explain please. . . 
Back to mv idea that there is an infinite number of irrational numbers, but a finite 
number of rational numbers, and if that holds true, then there mustn't, there can't 
possiblv be a rational number that fits between everv two irrationals. . . 
And vice versa, is it always possible to find an irrational number between two rational 
numbers? 

Yeah, because if there's an infinite number of them, then there must, (pause) okay this lopic 
is based on mv idea of. of there being an infinite number of irrational numbers and a 
finite number of rational numbers. . . 
And how about this, between any two rational numbers there's always another rational 
number, you say this is false, because? 

- 

Any two rational numbers there's always another. . ., well again that will be based on my 
assumption that there's a finite number of rational numbers, therefore, you have to at 
some point have gone as far as you can go, but I'm starting to think that that mav not be 



Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

Erica: 

Interviewer: 

true (lauvh), I'm starting to think that how could vou actuallv have a finite number of 
rational numbers, because even though rational number is a repeating or terminating 
decimal, you can still take it to an infmite number of decimal places, I mean you can still 
divide that space on that number line into an infinitely small subdivisions, so (laugh) .. my 
thinking on that at all. . . 
That's okay. . . 
Um, I think that mv whole idea of infinite and finite number of either one is something 
that I was either told. or somehow thought I was told and uut into mv brain and iust 
took it as face value and didn't reallv actuallv think about what that meant, or what that 
would look like. 

Um hm, but you believe that there is an infmite number of natural numbers. . . 
Yeah.. 

You do, right? 

Umhm.. . 
And you told me before, that rational numbers include natural numbers. . . 

Yeah. . . 
Already fiom that. . . 
It doesn't, it's, there must be an infinite number of both, (pause) .. . going back to trying to 
like as I said, I need to kind of picture it, see it . . . 
Maybe you meant in a given interval. . . 
In a given interval, there's still an infinite amount of numbers that can be both rational and 
irrational. 

And they never overlap? 

Uh, they never overlap, no they don't overlap. . . 
Yet we have infinitely many of both kids? 

Yeah (laugh). . . 
That is interesting. . . 
(laugh) It is. . ., yeah I don't know how that's possible but that's what um, yeah. . . 

Okay. So, so you would change it now again, this one too? 

Uh, between any two rational numbers there's always another rational number, yeah, I don't, 
um I'm not sure, but I'm, mv thoughts right now are leading me to believe that mv whole 
conception of rational numbers having a finite number and there being a finite number 
of rational numbers is not, is false, that there's also an infinite number of rational numbers 
and if that's the case, then there's going to be a rational number in between two rational 
numbers.. . that's possible . . . I can't picture any of it, so it's very hard for me to.. . 

You can't picture any. . . 
For that number, I just, I keep seeing this string of numbers that just keep going into infmity 
that. . . 
You mean you can't picture an irrational number, am I right in saying that? 

Yeah, or even that there's an infmite number of rational numbers like. 

Um hm. 



Erica: I just, this too, it's not something to understand, I, I can't, I don't know, yeah. 

According to common sense, "countable" means "what can be counted", and it implies 

that what is countable must necessarily be finite. Although the usage of "countable" in Cantor's 

theory of infinite sets is entirely different, meaning that the elements of the set can be put into 

one-to-one correspondence with the set of natural numbers, it is possible that Erica adopted this 

more colloquial meaning of the word. Further research could examine whether this is indeed a 

"verbal obstacle" and, if so, what its extent is. 

7.2.3 The sources o f  misconceptions renardinn the fitting of num bers 

We suggest that the reasons for many of these ill intuitions regarding the fitting of 

numbers lie in the non-intuitive character of the infinite; for example, that rational numbers, 

given their dense order compared to the discrete order in the natural numbers, are a proper subset 

of natural numbers. Or, that the rational numbers, in spite of being everywhere dense, are in fact 

very sparse in comparison to irrationals. All this is non-obvious, and often not convincing. 

Cantor's proofs are both simple yet very sophisticated, leaving many who have contemplated 

them still in doubts. Sometimes these doubts come not from what they show us, but from what 

new questions they open up for us, and leave unanswered. For example, one may be left 

wondering why the famous Cantor's diagonal argument cannot be applied to show that the 

rationals are non-denumerable too (the proof that another real number can always be found, 

different from all the ones in the supposedly complete list of all the real numbers presented as 

infinite decimal expansions). 

Therefore, there are epistemological obstacles that may account for the difficulties 

preventing learners from concluding that there is a rational number between any two irrationals, 
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and also that there is a rational number between any two rational numbers. Rational numbers are 

seen to be both very dense, and very scarce, and moving between these two conflicting ideas 

may cause inconsistencies to erupt. Furthermore, the formal knowledge that the irrationals by far 

outnumber the rationals, encourages the thinking that there must be some closest, neighbouring 

irrationals between which no rational number can be found. Excerpts from interviews with Kyra 

and Kathryn exemplifi this. 

(...responding to whether a rational number can always be found between two irrationals..) 

Kyra: No, just because it's so, it's so dense, the amount of irrational numbers is so dense, I don't 
think, I don't t h i i  in every case you would find, because if you could find a rational number 
between any two irrational numbers, that would mean that the richness, that wouldn't hold, it 
would have to be equal richness, in order to find one, so to be consistent, I would have to say 
no. . . 

Kathryn: Not always though, because I mean there are going to be, if you look at your irrational 
numbers, they're, in one case there will be an irrational number that's right beside 
another one, right. . .So there can't be anvthin~ between those two. . .Like if you think of 
urn 1234, if you think of those as the only numbers that exist, then you can't put anything 
between 1 and 2, right. . .So in the same way, there has to be, like you have to go down far 
enough that there will be two irrational numbers that are right next to each other right. . .So 
between those two, you can't put anything else, but between any two that you pick sort of 
arbitrarily, then you should be able to. 

What we see here, is the mind's desperate effort to accommodate new evidence brought 

about by the exposure to new formal knowledge, such as that of cardinal infinities. Sometimes 

consistent connections fail to be created, and some more basic conceptions fall apart; for 

example, the understanding that there is always a rational number between two rational numbers 

may be lost. This can be seen as a failure to integrate different items properly, and reorganize 

one's knowledge, to reach a better understanding of the subject following this exposure. As it is, 

there are inherent difficulties in contemplating the infinite. Beyond the naiire notion as 

"something that goes on and on", infinity is difficult to imagine. Compounding the problem is 

that a great majority of PSTs based their thinking entirely on a single type of representation, 

namely the decimal. 
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One of the participants of the study, Dave, who initially reached the same conclusion as 

Kyra was later convinced by another student of the fallacy of such thinking. Still, he admits he 

feels troubled by the contradiction this acceptance purports. We present this excerpt because it 

was the most successful, albeit still unsatisfling for Dave, resolution of this conflict. 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Interviewer: 

Dave: 

Is it always possible to find a rational number between any two irrational numbers? 

Between any two irrational numbers, okay at first I thought no, so I put false, but I talked to 
Jody about it later and he came up with a really good example and I thought that convinced 
me. So what he said was, he says, so let's say I have two irrational numbers, and one of them 
is obviously, one on the top is bigger than the other one, so what I do is I take the larger one, 
or I take the two of them and line them up and pair up the places or match up the places, as 
soon as there's a place value that they differ the larger one I can just chop off the remaining 
and that gives me a rational number that then is smaller than the larger one, but bigger than 
the smaller one that I had. . . 

Wow! 

This is a convincing argument for me, so I'm going with that fiom now on (laugh). 

Okay, but then how do you reconcile that with your previous discussion here, in that 
irrationals are so much richer, that there's way more irrational numbers and yet here you're 
just showing me how you can always insert a rational number between two irrationals. . . 
Good question, I don't know, I had thought no way, I thought the irrationals are so dense, 
there are so many more of them that I probably could find two, that there wasn't a rational 
number in between, but then Jody said that to me and I thought, yeah that seems right, that 
seems like you can do it, so I don't know. I was torn. But he was convincing, it was a very 
convincing argument but I don't know. 

Dave has a method - he knows how to do it, and that is convincing enough. At the same 

time, he is also convinced that irrationals by far outnumber the rationals (in fact, he showed us a 

"proof" for that too, one using the mapping argument). He is tom, because he believes both are 

true, and yet they seem to contradict each other. However, most individuals could not sustain this 

contradiction, and thus consciously or subconsciously resolved the conflict in one of the two 

ways. They either decided that both infinities are equipotent, reflecting the intuition of infinity as 

absolute; that is, there cannot be many kinds of infinity, and if two sets are infinite then they 

have an equal numberof elements, that is an "infinity" of them. Or, it was concluded that there 

are some closest irrationals between which no other number could be inserted. 
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7.3 Intuitions on operations 

We investigated PSTs' intuitions regarding the effects of operations between various 

types of numbers, using the following questions from Item 7: 

Determine whether the claim is true (T) of false (F) and explain your thinking. 

a) If you add two positive irrational numbers the result is always irrational. 

b) If you add a rational number to an irrational number the result is always irrational. 

c) If you multiply two different irrational numbers together the result is always irrational. 

d) If you multiply a rational number by an irrational number the result is always 

irrational. 

i) A product of two rational numbers can sometimes be irrational. 

Item False [%] True [%I No answer [%I 

Table 9: Quantification of responses to Item 7: a, b, c, d, i - Operations. (n=46). 

Looking at these results, what really stood out was that the majority of responses to 

question a and c were incorrect. From our theoretical perspective, we would suggest that this is 

due to participants' difficulty in conceiving irrational numbers as an object. That is to say, the 

concept of irrational number has not been encapsulated; instead, an irrational number is viewed 

as stuck in the process of becoming by an endless summation of its decimals. Despite the fact 



that all the participants were competent at algorithms such as rationalizing the denominator, as 

much as 45.6% did not invoke this knowledge when asked whether the product of two irrational 

numbers could ever be rational (question c). Instead, they used intuitive reasoning, which almost 

entirely consisted of considering decimal representations of numbers. Below are examples of 

such reasoning. 

7.3.1 Justifications inconsistent with the formal dimension o f  knowledge 

1. The multiplying of a rational and irrational number will not stop the decimals fiom 

continuing. 

2. When you multiply two numbers each with an infinite number of digits together, the result 

will still be a number with an infinite number of digits. 

3. I use decimal representations. Because the decimal representations of irrational numbers 

cannot be terminated, the sum of such numbers will be a decimal that cannot be terminated. 

4. You cannot add & + x ,  but you can add their decimal representations. The sum cannot be a 

terminating decimal. 

5. Two numbers that have an infinite number of non-repeating digits to the right of the decimal 

will have an infinite number of non-repeating digits in their sum. 

6. If we think of the product of two irrational numbers as an irrational number of irrational 

things, the question becomes "will these numbers somehow add up to rational?" I don't think 

SO. 

7. The sum of two irrational numbers is irrational because 2& + 3& = 5&. 

8. No pattern x no pattern = no pattern. You can't create a pattern through multiplication. You 

are just increasing the numbers, not changing the relationship. 
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9. You cannot add two irrational numbers because they both continue forever so you would be 

adding infinitely. 

Moreover, of those individuals that did answer question (c) correctly, many of them 

ignored the requirement that the two irrational numbers must be different and gave examples 

such as f i  x & = 2 . Hidden in these results on the table as well are questions that were 

answered correctly in terms of true or false but involved errors of fundamental logic in their 

justification. Some students just showed one example which held true in order to prove that all 

possibilities are true. For instance, one of the participants wrote & + & as a justification that it 

is true that the sum of two irrational numbers is necessarily an irrational number. 

Many of the examples above show the over-reliance on infinite decimals when 

considering the results of operations involving irrational and rational numbers. Although the 

thinking in the first response above leads to a correct conclusion about the product of rational 

and irrational number, a similar kind of thinking is misleading in considering questions (a) and 

(c), and may account for the surprisingly weak performance. The last comment in our list is an 

example of perceiving a number with infinite decimals as being constructed in time (potential 

versus actual infinity), not as an already made object. 

We suggest that one of the main reasons for difficulties is the disposition towards closure 

of operations within a number set, in this case, the set of irrational numbers. The intuitive belief 

that the sum of two irrationals is irrational, and that the product likewise, was expressed many 

times either implicitly of explicitly. The following three responses from the interviews exemplifl 

this. - 

(In response to whether the sum of two irrationals is necessarily irrational.) 

Steve: I still believe that that's the case. Urn, because if you cannot, I t h i i  this is how I thought of 
this one, I was again thinking-in fraction form, so if I had two numbers that cannot be in a 
fraction form, I don't see how I could all of a sudden put in a fraction form. Because when 



we add fractions, we always look at the denominator and add it, find the common 
denominator and all that, but here I don't think it was possible you can do that because you 
can't put them in, in the fraction form. So that the addition of them would always have to be 
irrational. 

Claire: No,. . . simply because if you have 2 irrational yes, a and b, irrational numbers, and you add 
them, addition is closed, addition is stable in that set, in irrational numbers, yeah the answer is 
still um, it's still irrational. 

(In response to whether the product of two irrationals is necessarily irrational.) 

Kathryn: You can't multiply two different numbers that cannot be expressed as fractions, and get 
fractions. I t h i i  you might be able to do it, but it's going to take until Christmas to find an 
example ... 

(Note: the interview took place in June) 

7.3.2 Justifications consistent with the formal dimension of  knowledge 

In contrast, the following responses utilize the formal knowledge of operations with 

irrational numbers. We number them for the convenience of future reference. The letter in 

brackets indicates the question for which the answer was given. 

(2+&)+(2-&)=4 (a) 

& x 2 & = 2 x 3 = 6  (c) 

1 
&--I (c) 

4 -  
Proof by Contradiction: Suppose a is rational, b is irrational, a+b=c and c is rational then 

b=c-a is rational. Therefore, b is rational and it contradicts the original assumption so, in 

conclusion, c cannot be rational. (b) 

There must be two irrational numbers whose digits will "cancel" when added to result in a 

rational number. (a) 
- 

You cannot multiply two different numbers that cannot be expressed as fractions and get a 

fraction. (c) 
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7. Multiplying a rational by an irrational is just scaling the irrational by a certain factor. This 

will not change the product from being irrational. (d) 

8. Proof by counterexample. You can find two irrational numbers that create a repeating 

decimal expansion. (a) 

For example, 0.12 122 1222 12222.. . 

9. Rational numbers can be written as ratios. We multiply two ratios and we still get another 

ratio. (i) 

The first three justifications demonstrate a high level of concept development; that is to 

say, (2 + &) or 2& is conceived as an object and not only as an instruction for adding or 

multiplying two numbers. On the basis of both written questionnaire and clinical interviews, we 

found only six instances of PSTs exhibiting the attainment of such proceptual thinking with 

respect to irrational numbers. In the interview, Claire expresses her views about the challenges 

and the importance of helping students attain a proceptual thinking about numbers. 

Interviewer: If you multiply two different, okay, so we want to have different irrational numbers, together, 
the result is always irrational. Is this true or false? 

Chire: It's false, because you can take one number being 5 square root of 2 times 7 square root of 2, 
this is an irrational number, a product between, so I think, no I think, I'm, this is an irrational. 
So I think it should be set, these kind of questions should be, when you teach irrational, you 
have to show to the students, you know what, when you have. . ., I heard many, and I think 
they're wrong, saying that 7 square root of 2 are two numbers. . . 

Interviewer: Hrnm. . . 
Claire: You understand? And the student is confused with those two numbers. No it's only one 

number, you have to see it l i e  a symbol, 7 square root of 2 a number, don't see it like two, as 
long as you see it, but it should be somewhere in the definition or somewhere when you teach 
the lesson, it should be pointed out that this is a number, instead of saying two different 
numbers. Like, you know, la, 2a, 1 square root of 2,2 root 2, yes, it's a slightly difference, 
and you don't have to, you have to be very careful how you, you say it in front of the students. 
Otherwise they will come and say, oh those two numbers I don't know. . . 
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It is interesting to note the inconsistency between Claire's responses to questions (a) and 

(c) . Although she clearly uses proceptual thinking in case of multiplication, she does not do so 

in case of addition. We wonder whether it has to do with the writing of the number, that is 7& 

is more likely to be thought of as "one thing" in comparison to 7 + & In other words, the 

operation of multiplication is implicit in 7& while the operation of addition is explicit in 

7 + f i  . It could be that as a result of this, she maintains that irratioanals are closed under the 

operation of addition. As the vast majority of other PSTs, she falls into the trap of considering 

the decimal representations without the recourse to a symbolic representation. 

The fourth example in our list of justifications uses the proof by contradiction. Only one 

participant from the group used such formal and rather sophisticated argument in judging the 

effects of operations between members of the two sets. 

In conclusion, we found that there was a great reliance on decimal representation (even 

when a symbolic representation would be more appropriate and revealing) and a general lack of 

competency in evaluating the adequacy of statements related to operations with irrationals. An 

ability to flexibly move between representations in considering the truth of these statements was 

exhibited by as few as 4 participants. Vast majority of participants incorrectly argued that adding 

two positive irrational numbers will always produce an irrational number, and likewise, that 

multiplying two different irrational numbers must result in an irrational number. Interestingly, 

there was not a single case of drawing upon a standard procedure, such as the commonly used 

"rationalizing the denominator". This reveals that algorithmic knowledge can become highly 

procedural and rote for the learner to the extent where the very purpose of using such procedures 

may be completely lost. It indicates there is a problem in the integration of algorithmic, formal 

and intuitive knowledge. We interpret the strikingly poor performance on item #6 (a) and (c) as 



an indication that the notion of irrational number, such as 5 + for example, is commonly 

conceived operationally (as a process) rather than structurally (as an object) (Sfard, 1991). 

In this chapter, we centered our attention on the complex notion of intuition as 

manifested in the participants' responses regarding the relations between the two infinite sets 

(rationals and irrationals) that comprise the set of real numbers. Our findings indicate that 

underdeveloped intuitions are often related to a weak formal knowledge and to the lack of 

algorithmic experience. Constructing consistent connections among algorithms, intuitions and 

concepts is essential for having a vital (as opposed to rote) knowledge of any mathematical 

domain, and therefore also for understanding irrationality. It is clear that intuitions cannot 

develop in a vacuum. What is often missing, particularly in this domain, is the attention to 

algorithmic dimension. In the next chapter, we present several ideas on how to address this 

lacuna. 



CHAPTER 8 

Recommendations for Teaching Practices 

It is our viewpoint that structural and operational conceptions are mutually dependent, 

and that the development of a concept often involves an individual's journey starting from an 

operational conception and ending with a structural conception. There is a growing interest in 

how concepts and procedures are related, both from ontological and psychological angle (Sfard, 

199 1). In our work, we find it important to distinguish between standard procedures or 

algorithms and those procedures or algorithms that are used for pedagogical purposes in order to 

build a foundation for a given concept. We will refer to the later as "pedagogical procedures" or 

"pedagogical algorithms". Whilst standard procedures are efficient ways of doing things that 

have developed over long periods of time, pedagogical procedures are designed only for the 

didactical purpose of illuminating the concept in question. This implies that a pedagogical 

procedure is abandoned when the purpose has been achieved, i.e. when the concept has been 

understood. Standard procedures, on the other hand, are not always sufficient in teaching a 

concept, as they often obscure rather than illuminate the concept (just think of the multi-digit 

multiplication, for example). 

In this chapter, we propose several pedagogical algorithms to address what we have 

found to be the shortcomings of the present-day didactical choice in the teaching of irrational 

numbers. The ideas behind these algorithms were developed by Professor Emeritus Klaus 

Hoechsmann ("Division by Chunks", "Squaring up a Rectangle") and by Professor Andrew 

Adler ("Revealing the Digits Beyond") at the University of British Columbia (UBC), and they 

come from the many years of their teaching experience and interest in mathematics education. I 
- 

have first encountered them in the courses "Mathematics by Inquiry - MATH 336", offered 
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jointly by the departments of mathematics and education at UBC in the year 1998 (instructed by 

Cyntia Nicol and Klaus Hoechsmann) and "Mathematical Demonstrations - MATH 4 14" offered 

by mathematics department at UBC in the year 1999 (instructed by Andrew Adler). What is 

presented in the remainder of this chapter is an application or an adaptation of these ideas for 

pedagogical and remediation purposes. Discussed is the purpose behind each of the algorithms, 

how it relates to the findings of this study, and what we hope to achieve by it in an instructional 

setting. 

This research study found that the equivalency of the two competing definitions is not 

established within the concept image of most prospective secondary mathematics teachers, and 

this is seen as one of the major obstacles to the understanding of irrationality. The first two 

algorithms presented in this chapter, "Division by chunks" and "Using unitized decimal 

expansions to convert decimals into fractions" are aimed at facilitating the recognition of the 

equivalency of the two definitions. By establishing the understanding that a decimal number can 

be written as a fraction if and only if it is an infinite repeating decimal (taken broadly, as 

discussed in Section 4.2), these two algorithms directly target the issue of "missing link". That is 

to say, these two algorithms, in conjunction, are meant to deepen the part of understanding of 

rational number that is necessary for the development of the concept of irrational number, in 

particular its decimal representation. This work should come prior to the exposure to the concept 

of irrational number. 

The next two algorithms, "Squaring up a Rectangle" and "Cubing up a Brick" are aimed 

at developing the concept of irrational number. In accordance with the view that the genesis of 

structural conceptions rests on performing operations on the already existing lower level objects, 

we suggest that the concept of irrational number should be developed starting wi& the square 

root. Square roots and then higher roots can offer a first-hand experience of what it means to say 



that a number is irrational (unlike x, which until a senior level university course is irrational only 

by "hear-say"). In this sense, more consideration should be given to the formative role that 

square roots and higher roots play in the development of the concept of irrationality (unlike the 

"patterned transcendentals", from which this kind of insight is unlikely to develop). 

The final algorithm presented in this chapter, "Revealing the Digits Beyond", aims at just 

that - revealing more digits of a square root than a calculator can display. This algorithm can be 

used when teaching the procedure of "rationalizing the denominator" to show that often 

rationalizing the numerator can be useful too. In addition, it can help with motivating the need 

for the proof of irrationality I/?. 

8.1 Attending to the "missing link" 

Having observed the problem o f the "missing link" discussed in detaj 11 in Chapter 6, we 

claim that a good number of troubles responsible for the limited understanding of the concept of 

irrational number stems from the poor didactical choice of casting out upon students two 

competing definitions of "irrational". The relationship between the two definitions is often not 

recognized. Out of the 46 participants of our study, we have not found a single individual that 

could explain this relationship. The non-understanding of this relationship was found to 

perpetuate misconceptions and cognitive conflicts. For this relationship to be recognized, one 

needs to understand, 

a) how fractions give rise to repeating decimals, 

b) that every fraction is a repeating (or terminating) decimal, and 

c) that every repeating (or terminating) decimal can be represented as a fraction. 
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To understand the first two ideas, one needs to have experienced division beyond what 

many students get to experience in schools. As for the last, we have been convinced by the 

results of this study that the method of "symbolic juggling of infinite decimals" does not achieve 

the intended goal. For these reasons, we propose instructional methods, which we believe are 

useful in practice. 

8.1.1 From fiactions to repeating decimals 

As shown in Section 6.3, how fractions give rise to repeating decimals is not common 

knowledge. Nor is it common knowledge that fractions always and necessarily either terminate 

or repeat their decimals. We think two interrelated factors contribute to this state of affairs: 

a) lack of experience with division by hand (it's tedious, calculators do it for us anyway), 

b) over-reliance on calculator's display and the inclination to draw conclusions from partial 

information displayed. 

Even a simple task, such as expanding the digits of 1 2 3 4 2 ,d 6 can serve to build an 
7 ' 7 ' 7 ' 7 ' 7 '  7  

understanding of how remainders necessitate the repeating of digits. 

In what follows, we present an algorithm, which we call "Division by chunks". It is 

intended for the taming of large periods; that is, to facilitate the display of digits that generally 

cannot be seen on a calculator display. Of course, one could always do it by hand, but this is 

prone to error and quite discouraging for many students. This algorithm, beyond revealing the 

interesting laws governing the behaviour of repeating digits, such as cyclic permutations of 

digits, also reinforces the understanding of division and place value. 



"Division bv chunks" 

Investigate: When you divide 60 by 19, is it going to be a repeating decimal? 

I Using the "division paper" and a calculator, divide 60 by 19 using division by chunks. I I Option: work in periods of 3 digits, or work in periods of 6 digits. 

In considering 1 9 p ,  the student is supposed to decompose the remainders into units of 

smaller value unconventionally. Taking three digits at a time (i.e. decomposing first into 

thousandths, then millionths, then billionths, . . .), dividing by calculator, and, keeping track of 

the result, the students needs to find the remainder each time. To start, the calculator entry is 

60000 + 19. The display shows 3 157.894737. We take the integral part of this, 3 157, and 

multiply it by 19. The result, 59983, is then subtracted from 60000, and this gives a remainder of 

17 (i.e., 17 thousandths remain when 60000 thousandths are divided by 19). Next we repeat the 

steps using 17000 as a dividend, that is, we decompose the remaining 17 thousandths into 17000 

millionths, and continue with the process. Once the same remainder has been encountered, 

everything after that repeats. 



Decimal point 

In the above example, the repeating period has 1 8 digits, which are 157894736842 105263. 

Going by 6 digits at a time (decomposing into millionths, then trillionths, . . .), speeds up the 

process twofold, and can thus be used to investigate fractions with very long periods. 

Decimal point 

8.1.2 Converting decimals into fractions 

The converse, that any repeating decimal is a fraction is even more difficult to grasp. The 

"juggling" method presented in Section 4.2 has been found ineffective. 
- 



Excerpts from interviews speak of the ineffectiveness of this method intended to 

convince students that every repeating decimal can be represented as a common fraction. In fact, 

in our study we have not found a single participant who could reproduce or demonstrate this 

method. Two participants of this study had a distant memory of having seen some kind of "trick" 

that convinced them that this conversion can be done (recall Dave and Stephanie from Section 

6.3). 

For these reasons, we suggest an approach, which, instead of relying on the "juggling" 

method, uses the idea of "unitized infinite expansions". The method relies on the fact that every 

repeating decimal can be "undone", step-wise if necessary, to the point where the unitized 

expansion is visible. It provides an algorithmic experience which also teaches numeracy and 

encourages fluency in operating with fractions. In what follows, we outline a series of exercises 

intended to lead students to understand not only that every repeating decimal can be converted 

into a fraction, but also how this can be done. 

"Unitized Infinite Expansions" 

An investigation similar to this could be presented to students: 
- - - - 

I For each of the given fractions, find its decimal equivalent (using long division). 



Now find the fraction form of the given decimal number. 

= 0.55555555.. . 

= 0.12121212 ... 

= 0.012012012 ... 

=o. 0111111 ... 

= 2.00121212.. . 

= 4.056785678.. . 

In this activity, students are expected to make connections between the repeating periods 

of a given infinite repeating decimal and the corresponding unitized infinite expansion. That is to 

say, they need to make conclusions about what operations might have been performed on the 

appropriate unitized infinite expansion to result in the given infinite decimal. In this sense, the 

method involves "working backwards". For example, 0.55555.. . can be seen as 5xO.lllll.. ., 

which is equal to 5 x $ . Therefore, 0.5555.. .= $ . 

As a side note, the task above should be preceded by a task that requires the converting of 

a terminating decimal. Fractions without repeating digits are converted easily. The most that 

needs to be done is to reduce them. Of course, this could be followed up by an investigation into 

what characterizes fractions that have terminating decimal expansions. 

Example: Express 1.75 as a fraction. 

Fractions with repeating digits, however, require some creativity. For the student, the idea 

starts building on a simple fact: that is, it is easy to see that the unitized infinite decimal 

expansions never "resolve". They always give a remainder of one (one tenth, one tenth of a 



tenth, one tenth of a tenth of a tenth; for others we can just replace the word "tenth" by 

hundredth, thousandth, ten-thousandth): 

Let us call these 

"unit expansions" 

After students have verified these results for themselves, a sequence of tasks such as the 

following can be presented: 

1 
Using these results, write 43 x - in decimal form. 

99 

Learners are expected to use the results obtained from the expansion of &to conclude that 

Can you guess what would be the fiaction form of 0.5555.. .? 1 

Here we would expect the students to think along these lines, "Since I know that 

0% 5 x  0 . i = 5 x $  = $, it must be that 0.5555 ... is five ninths." 

The exercises could then evolve to include the varying of the period. 

Now try finding the fraction equivalent of 0.123 123 123.. . 

Again, working backwards, the student would have to conclude that 

- - 
O.l23= l23xO.OOl= l 2 3 x & = E  
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Often decimal numbers have parts that repeat as well as parts that do not repeat. The 

following exercise could be given to students to develop an understanding of what is implied by 

such "shifts" and how we can deal with such cases. 

Try finding the fraction farm of 0.033333.. . 

Students are expected to see that this is related to the unit expansion of one ninth - it has 

the same period but it is ten times smaller. Therefore we have: 

The next exercise could involve a shift (multiplication by a tenth, hundredth, . . .) and a 

sum. 

Here four tenths have been added to a tenth of eight times our unit expansion of 

0.1 11 11.. . Therefore, the process of conversion involves figuring out what makes the number 

different from the corresponding unit expansion. Learners are expected to notice that after 

systematic disassembling of the decimal number, they can simply translate all the parts into 

fractions linked by appropriate operations. For example: 

Since 0 .48=0 .4+0 .08=0 .4+8~o .o i=o .~+8~o .1~o . i  
- 4 1 1 44 22 

itholdsthat 0.48=-+8--.-=-=- 
10 10 9 90 45 

After a series of exercises such as these we would expect students to be able to find the fraction 

equivalent of any repeating decimal number, both "immediately repeating" and "eventually 

repeating", and even more importantly, to understand that this can always be done. 



8.2 On concept acquisition 

The genesis of the notion of irrational must be grounded in some process. We have good 

reasons to believe this, based on psychological and ontological grounds. Sfard (1991) suggests 

that the building of a new mathematical object, such as the concept of irrational number, starts by 

carrying out processes on lower objects, which are previously constructed structural conceptions. 

A profound insight into the processes underlying the new notion is a necessary foundation for the 

resulting entity to be accepted as a new kind of mathematical object. In our research we have 

seen a number of cases, where participants developed a debased, quasi-structural approach which 

demonstrated as a tendency to identi@ the concept of irrational number with "infinite, non- 

repeating decimal". It seems that the textbook writers think that the concept of irrational number 

can be brought into being just by the force of an appropriate definition (or two, to be safe). 

However, our findings indicate that this is far removed fiom the truth. 

8.2.1 The genesis o f  the concept o f  "Suuare Root" 

Even for prospective secondary teachers, the absence of the mediation of computational 

processes in the process of acquiring a structural version of the concept can be a serious obstacle. 

There is a tendency when a concept is introduced purely structurally, that the definition is 

interpreted in an operational way. Recall the case of Anna who considered irrational as "cannot 

be produced by divisiony', and who was consequently led to conclude, on the basis this definition, 

that n: was rational. 

An excerpt fiom the interview below further suggests that greater attention needs to be 

paid in designing instruction so that students may come to understand in the first place what a 

square root is. Again, we turn to the interview with Anna. In our efforts to explain the cause for 

such limited understanding as seen in her case, we came to a conclusion that the reason may be 



that she never came to understand the meaning of square root. On the basis of historical 

development, we maintain that square root is the first and most important pillar on which the 

learning of the concept of irrational number ought to be based. If a student cannot get passed 

that, it is unlikely that he or she will develop any meaningful notion of the concept of irrational 

number. The case of Anna supports this view. 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Interviewer: 

Anna: 

Um, I think, because I think that like, irrational numbers can never be a quotient, or they can 
never be a result or a product, it can be used um as urn, you know, a multiple or a divident, or 
urn, or and not even as a sum either, so thev can never be the result of anv equation, I don't 
think. . . 
Never be the result of any equation.. . What do you mean, can you please explain? 

No, what I meant was um, when I said that an irrational number is never uh the result of 
an operation that we do, like if the operation is multidving, the result wouldn't be, if the 
operation was dividing, the result wouldn't be, an irrational. (pause) But if the result, if 
the operation was taking a square root of somethiing. (pause) But I'm like reallv not even 
sure of what taking the sauare root of something is, in the same wav that I understand 
multiplvin~ and dividing anvwav. 

What is the closest to what you're understanding is. . . 
Of taking the square root? 

Urn hm. . . 
Well, it's the opposite of squaring somethiing, like a step forward, a step back. . . 
Okay. . . 
Right, so when you're squaring something, you're multiplying it by itself, or not, yeah, a 
number of times, right, so then tak in~  a square root should be dividinp something bv itself, 
if you were to just take that concept and mirror it. I'm just exploring this right now, ?? I 
really never thought of it, you know like 4, if you were going to, if you had 23, you'd go 
forward twice, multiply it by itself once, multiply it by itself again, to take the square root, 
then you'd be taking two steps backwards, but you can't divide, you can't go more extra steps 
backwards, you can't go into the negative. You can divide 8 by 2 and get 4 and divide 4 by 2 
and get 2, but you can't divide 2 by 2 and get the square root of 2, you'd get 1. So I'm not 
sure what taking a square root of something is, it must now be the oaaosite of square. 
(Laugh) 

It is evident that Anna confuses the square root with repeated division. She has a hard 

time making sense of how the squaring of a number relates to the square root, although she 

intuitively believes they must be "opposites" in some sense. To prevent people from failing to 

understand the square root (and other roots), which form the basis of understanding the irrational 
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number, we suggest that every student should experience the creation of a square root via an 

algorithm, which we call "Squaring up a Rectangle". In what follows we present this 

foundational algorithm with an aim to help students build the notion of square root. Note that this 

algorithm is in keeping with the idea that operations on lower objects, which student has already 

encapsulated, give birth to higher-level mathematical conceptions, and as such it honors the 

nature of learning mathematics. 

"Squarinp up a Rectanple" 

On the left-hand side you see a rectangle with side lengths a = 2 and b = 5. Can you 

devise a way of transforming this rectangle into a square so that the area remains unchanged? 

I How big is the side of the square? I 

The role of the teacher would be to help students to think of a series of systematic steps - 

an algorithm - that will produce the desired result. Clearly, side a must be increased, and side b 

must be decreased if we are to end up with a square whose area is equal to the area of the 

rectangle. Since it is quite obvious that the side of the square will end up being somewhere 

between 2 and 5, a reasonable suggestion usually made by students is to start by taking the 



average of the two sides. This approach makes sense because it is systematic and can be repeated 

using a simple rule (one that can be programmed for a computer). 

For the other side, there is no choice - the area must be kept unchanged at all times. This 

means the area of 10 needs to be divided by the newly obtained side length to arrive to the result 

for the other side length. Students should do the averaging and the division using a calculator, 

writing down all the digits that the calculator displays. The goal is to know the side of the square 

exactly. 

The situation would look like this: 

Algorithm: 

ai + bi 
Step 1: ' Average the two sides (TI 

Step 2: Let that be the new side a ( = - +bi ) 
2 

Step 3: 
10 

Find the other side keeping the area unchanged. (b,+l = -) 
ai+l 

Studentswould be required to apply the algorithm for i = 0,1,2,3.. . until needed, that is, 

until the two sides appear to be equal, at least according to the calculator. In this example, a 



"square" is obtained after five iterations. Both side lengths, according to the calculator are equal 

This approach gives the student a concrete representation of the square root as the side 

length of a square with a given area. For example, a square with an area equal to 10 has a side 

length of 3.162277660. This can be seen as just another way of saying that the square root of 10 

is 3.162277660. The reason we chose 10 is not accidental. As students are very familiar with 

multiplying by 10, the result could be used to launch an inquiry into its accuracy. That is, have 

we really found the precise length of such square? In the next section we present a possible 

didactical approach for introducing the proof of irrationality of &6. 

It is worth mentioning that using the same algorithm, we can find the side lengths both as 

common fractions and as decimals. We present an example, this time starting with different side 

STEP 
0 

lengths for the rectangle with area 10. 

a 
2 

b 
5 

Width Length 

Fraction Decimal Fraction Decimal 



What is interesting for students to notice upon arriving to these results, is that the decimal 

version surely looks the same. In fact this happens already at the fourth iteration of the algorithm. 

Hopefully students will ask themselves, "What about fractions? Shouldn't they be equal too?" 

Introducing the proof of  irrationalitv of & - 

When checking out on the calculator whether 3.162277660 x 3.162277660 equals 10, 

some calculators report exactly 10, while others report 9.999999999. This is a good place to start 

the discussion about whether this product could ever be exactly 10. In a natural way, we come to 

the need for proof. 

Let us suppose that the two fractions that represent the side length of the square, which 

we obtained in the last step of the algorithm discussed earlier, are equal. 

This gives the following, impossible result 

(2161873 163521)~ = 10-(683644320912)~ 

The right side of the equation is a number terminating with zero, while the left side of the 

equation is a number terminating with one - so the two sides cannot be equal. 

Is there a "perfect" square root of 10 (as 3 is the square root of 9)? Of course it could not 

be a whole number, but it might be a common fraction, a different one than the one obtained by 
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our algorithm. At this point perhaps students would be able to accept a more formal argument, 

namely the proof of irrationality of &6 , which is a didactical variation of the classic proof of 

irrationality of & , presented in Section 4.3. 

Let us suppose that there is some common fraction mln that is a perfect square root of 10. 

== n Jm 
Upon squaring both sides, we get 

"'= 10 
nZ 

It follows that mZ = 1 On2. 

With m and n being whole numbers, the right side of this equation is a number with zero 

as its last digit. This can only happen if m ends with a zero too (as no other digit except zero, 

when multiplied by itself, can end with zero). But then the left side of the equation will have an 

even number of trailing zeros. Can there be an even number of zeros on the right side? 

There is no such common fraction. And as we have found earlier, all decimals with 

repeating digits can be transformed into fractions (as well as those decimals that terminate, of 

course). We conclude there are such numbers, which neither terminate nor repeat decimals - 

these we call "irrational numbers". Furthermore, this algorithm can be extended to build the 

notion of higher roots as well. 



Extendina the alaorithmic experience: "Cubing up a brick" 

Without losing any substance, transform the "soft" brick with a volume of 9, on the left- 

hand side of the diagram, into a cube. What will be the side of the cube? 

One may decide to start with 1 x 1 x9 or 3 x 3 ~  1 prism, or any other rectangular prism with 

a volume of 9. 

Since all three sides must end up having the same size, it makes sense to start with a brick 

with two equal sides. Then we can keep two sides equal and vary only the third side accordingly 

to keep the volume unchanged. Of course, when averaging, we take all three sides into account. 

This method is the most efficient one. Here are the results of the process described. 

I STEP I 
a I 
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As demonstrated here, the algorithm of "Squaring up a Rectangle" can easily be extended 

beyond square roots and cube roots to include any root. Students will find it amusing, and 

delightful, after such amount of hard work, to find out that there is a button on the calculator that 

one can press, and find the same result. 

The symbolic representation, for example f i  , is introduced through the need to convey 

that we mean not the approximation, but rather the exact length of the square whose area is 10. 

The students can now, after this experience, without fear of the unknown, find the approximation 

of f i  by pressing the square root button on their calculator, and know exactly what it means, 

and how it can be found by hand. To say the least, this is very reassuring, and hopefully nobody 

will be left in the dark as Anna regarding the meaning of square root. 

What remains to be explored with students with respect to irrational numbers is that 

although such length is inexpressible as either a common or decimal fraction, it indeed exists. 

This is where the geometric representation of an irrational length segment, via a construction 

using the Pythagorean Theorem, becomes indispensable. Although irrational numbers cannot be 

"captured" numerically, many of them can be "captured" geometrically. This notion should 

facilitate the reification of the concept of irrational number. As such, the concept of real number, 

in particular the idea that every real number has its place on the number line may become more 

easily understood. Although very scarce, there are suggestions in the literature, which promote 

the teaching of irrational numbers from the perspective of geometric representation (Coffey, 

2001); therefore,-we omit this from our discussion of suggested teaching practices. 
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Our final algorithm presented here is meant for students who already understand the 

concept of square root, and who are perhaps studying the idea of rationalizing the denominator. 

It may seem more of a mathematical curiosity; however, we include it because it is not 

commonly known, and yet it shows to the student that there are more digits following the 

decimal expansion of, say f i  , than presented on the calculator screen. 

Algorithmic experience: "Revealing the di& bevond" 

This algorithm uses conjugates to reveal more digits &than the calculator can display. 

It is suitable for students who are learning the algorithm of "rationalizing the denominator", as it 

points out that sometimes "rationalizing the numerator" can be interesting too. 

I Problem: I 
~ Find f i  to 1 1 decimal places using a cheap calculator. 

Solution: 

~ake1/-~ and get 1414.--- on the calculator. 

Now look at J~OOOOOO - 1414 and "rationalize the numerator". That is, multip dy it by its 

conjugate. In fact, we will multiply it by 1, where 1 is taken in the form 
J2000000+ 1414 . We 
,l%izGG+ 1414 

the following: 



J-- 1414 = 
( , / - - 1 4 1 4 ) ( ~ ~ 0 +  1414) - 2000000-14142 - 

(,/-+ 1414) 4- + 1414 

This can be handled by calculator. The display shows 0.2135623, therefore a more 

precise approximation is obtained by tacking on the extra digits, i.e. f i  w 0.14142135623. 

In this chapter we outlined a systematic approach to teaching the concept of irrational 

number, with special attention to the areas of understanding that this study found to be the most 

problematic. Several pedagogical algorithms for helping students grasp the concept were 

presented starting from those intended to create the necessary background related to rational 

numbers, continuing by the construction of the concept of square root, and ending with those 

suggestions for teaching that may provide extension, enrichment, and further insight for students. 



CHAPTER 9 

Conclusion 

Here we provide a brief summary of the major results of the study, and we discuss its 

limitations. Next we discuss the practical recommendations. That is, what are the pedagogical 

implications of this study, and what changes should take effect immediately. Open questions for 

further research that we think would be worthwhile pursuing in order to make the concept of 

irrationality more accessible to students are also discussed. 

9.1 Summary of Results 

The study found that the majority of the prospective secondary mathematics teachers who 

participated in this study possessed a limited knowledge of irrationality. With respect to their 

formal knowledge, the study found that vast majority of participants used the same criteria or 

characteristics as presented in standard high school textbooks as the only working definitions for 

irrational number. This suggests that the mathematical knowledge in this particular area did not 

advance much after high school for most individuals. Generalizing this, it seems that what people 

learn in high school about irrational numbers becomes somehow "cemented", or stuck at the 

level at which it is typically presented to high school students. 

Three major areas of formal knowledge were examined: a) ability to classify numbers 

into various number sets such as natural, integer, rational, irrational, and real; b) knowledge of 

the various representations of irrational numbers and the ability to translate fiom one 

representation to another; and c) knowledge of definitions and the ability to coordinate them. The 

study found that the major flaws in the understanding ranged fiom having an incomplete 

definition (such as the ratio of two numbers without the requirement that they be integers), to 

maintaining a collection of memorized rules for the purpose of identification of numbers (such as 



"immediately repeating decimals" are rational but the "eventually repeating decimals" are 

irrational), and sometimes hinging on a single representational feature as "an infinite non- 

repeating decimal" in lieu of the concept itself. It was not uncommon that a participant of the 

study needed to transform a given common fraction into a decimal number using a calculator in 

order to conclude that the number is irrational because no repeating could be seen. Particularly 

disturbing was performance on the item involving geometric representation of a constructible 

irrational length, with only 20% of the participants achieving an acceptable solution. A common 

belief was that such length cannot be represented geometrically on a number line because there 

are infinitely many digits in the decimal representation of the number; therefore, the process of 

making finer and finer decimal approximations would never conclude. Furthermore, this was not 

found to be a problem confined to irrational number alone; in general, the idea of number as a 

measure was found to be quite alien to most participants. 

In the realm of participants' intuitive knowledge, the study investigated intuitions on 

richness and density, intuitions regarding the fitting of numbers, and intuitions on operations. 

The data show that there are inconsistencies between the intuitive and formal knowledge, which 

is suggestive of obstacles. There are also inconsistencies between the intuitive and algorithmic 

knowledge, which suggests that algorithmic knowledge can sometimes become rote and 

disconnected from the system of concepts it is supposed to support. Such is the case with the 

algorithm of "rationalizing the denominator". Although every prospective teacher most certainly 

knows how to execute it, very few seem to understand what it means and why we do it, as can be 

inferred by the commonly held belief that the product of two irrationals must necessarily be 
- 

irrational. Other obstacles are of epistemological character (as can be seen by comparing 

historical obstacles with obstacles to individual understanding) but most are simply due to 

weaknesses in the formal understanding of number concepts. We found that if the formal 



knowledge has been secured, learners are capable of seeking acceptable explanations, such that 

would not violate their formal knowledge. However, we found that "ill" intuitions are much 

more prevalent. 

What was particularly noticeable to the researcher was the participants' resorting to 

intuitive arguments when formal arguments were perfectly accessible, at least at this level of 

background training in mathematics. This was especially true for tasks that asked of participants 

to explain the effects of operations between the members of the two number sets, rational and 

irrational. As anticipated, intuitions and beliefs that individuals held revealed a great deal about 

their understanding of number in general, and also about their formal knowledge of irrational 

number in particular. This is not surprising given that most of the questions posed in these items 

can only be considered after the concepts of irrational and real numbers have been solidified into 

objects and seen as new members in the category of number. Only in such state one can 

meaningfully investigate general properties of various sets of numbers and relations between 

their representatives, or solve problems involving finding all the instances of the category which 

hlfill a given condition. The evidence suggests that only about 10% of participants achieved a 

reified stage of the concept development. 

9.2 Pedagogical implications 

Here we wish to make our concluding remarks regarding the present state of the common 

practice of the teaching of this topic. The most screaming issue is the issue of using two 

competing definitions to define irrational number. This is a didactical choice supported, implied, 

or perpetuated by curricular documents, such as IRP, and textbooks, such as Mathpower. Based 

on the results of our research, we suggest that it would be better to teach one definition of 

irrational only, namely, that an irrational number is a number that cannot be expressed as a ratio 



of two integers with a non-zero divisor, and completely omit the other one (decimal). If the 

second "definition" is to be taught, then is should be derived from the first one, in which case it 

would be seen as a representational property of an irrational number when expressed as a 

decimal, and not as a definition. Furthermore, the focus on decimal representation, together with 

the non-understanding of how fractions give rise to repeating decimals, encourages a personal 

interpretation of the "decimal definition" and is prone to verbal obstacles leading to a host of 

misconceptions. For example, the common practice of identifjring rational numbers as those 

numbers that have a "repeating pattern" often leads to confusion in cases where the decimal 

expansion exhibits a pattern, yet it is aperiodic, and also in cases of long and not easily detected 

periods. In addition, having the "decimal definition" as the only working definition results in a 

perception that all this is just a game of useless labeling. The concept of irrationality remains 

hidden. 

Thus we see the practice of defining irrational numbers via two competing definitions as 

very problematic, even irresponsible. Such practice is promoted by some most commonly used 

textbooks (as described in Section 4.2), and followed by many teachers. Results of this study 

indicate that it cannot be assumed that learners will see the connection between the two 

definitions on their own. As demonstrated, almost none of the prospective secondary 

mathematics teachers that participated in our study recognized the equivalence of the two 

definitions and none of the participants could explain why the two definitions were equivalent. 

At the very best, the equivalence of the two definitions was taken by faith. We cannot expect 

students to make this leap on their own. The instructional practice of building the notion of 
- 

irrational number using two competing definitions causes cognitive conflicts and often leads to 

insurmountable increase in conceptual difficulty (see discussions on the issue of the "missing 

link"). This is a didactical obstacle to learning, which could easily be avoided. 
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Next big issue in the practice of teaching irrationality, also screaming for attention, is the 

fact that students must build the concept starting from definition only (together with seeing a few 

examples of irrational numbers). This is very difficult. What is missing is the attention to the 

algorithmic dimension of knowledge. We maintain that the development of the algorithmic 

dimension of knowledge of irrationality has been much neglected in school mathematics. 

Attention to algorithmic dimension is necessary because it provides the basis for the operational 

understanding of a concept, which in turn provides the basis for structural understanding of the 

concept. Structural and operational conceptions are mutually dependent, and so it is very difficult 

to bring a new concept into being without attaching it to the mathematical objects that students 

already know and can experiment with. Pedagogical ideas on how to do this can come from the 

historical development of the concept. For example, the concept of irrational number can be fully 

developed through geometry using the phenomenon of incommensurability. This implies that 

first students would have to acquire a fairly intimate understanding of the idea of "unityy and what 

it means for two lengths to be commensurable with each other. This in itself is a worthwhile 

pursuit as it allows students to see, from a different perspective, why it is that when adding two 

fractions with different denominators we must always find the common denominator first, before 

they can be added. It is just a matter of finding the common unit for the two lengths given by 

these fractions. In addition, the idea of "unit7' and the ability to perform the shifting of referent 

unit is so far reaching and so fundamental at the same time that it warrants a greater attention and 

emphasis throughout the curriculum. If the idea of unit is well developed it can provide an access 

point for students into understanding - the world of irrational numbers. Other suggestions for 

enhancing the operational understanding of the concept of irrationality have been provided in 

Chapter 8. 
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On a related note, we suggest that for the teaching of this topic it would be much more 

effective to build the notion of irrational number gradually, starting with square roots, then other 

constructible lengths, then higher (nonconstructible) roots. Only after all this knowledge had 

been secured, and after the relationships between the decimal representation and the 

corresponding geometric representation as incommensurable length and the corresponding 

nonexistence of a representation as a common fraction had been recognized, is an introduction to 

(patterned or non-patterned) transcendental numbers warranted. No harm would be done if 

students knew nothing about these numbers until and perhaps even beyond university, except for 

those that intend to become mathematicians. As it stands now, the practice of using 

transcendental numbers to show to students what kinds of decimal numbers are or are not 

irrational adds no value to understanding the concept of irrationality. On the contrary, putting 

this material into textbooks without explaining the reason why these patterned infinite, yet non- 

repeating, decimals are irrational, and how we can know that that they cannot be transformed 

into a common fraction, seems to be adding confusion rather than revealing something of 

importance. It adds confwsion by developing in learners the tendency to equate the concept of 

irrational number with "infinite, non-repeating decimal", promoting a pseudo structural approach 

devoid of the concept itself. Lumping all irrational numbers into the same bag like that does not 

honour the natural development of these matters. It does not support the individual learner in 

coming to terms with epistemological obstacles that seem to be unavoidable in the 

conceptualization of irrationality. 

Lastly on pedagogical implications comes our commentary about n: and what it is that 

teachers can and cannot, or rather should not, expect of students. We do not agree with the IRP 

curriculum document which states that students should be able to, "Explain whether or not x is  a 

rational number" @. F-41). When interpreting this instruction, there is a tendency in taking it to 
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mean that the digits of n, when displayed on the calculator, show no repeating, and that that 

suffices as an explanation. We suggest that it would be far better if students are given a direct 

statement that n is irrational without having to explain it. They could be asked to accept it on the 

basis of faith, and reassured that a proper explanation will follow later on in university when they 

will have acquired the knowledge that they need to see this. They can trust that this missing bit 

will not in any way compromise their ability to work with n for the purposes for which it is used 

throughout school mathematics. It is unfair to ask students to "explain whether or nor n is 

irrational" because they simply cannot explain-this without compromising the integrity of 

mathematics as a science of reasoning that is meant to be understood. Furthermore, accepting 

that the digits on the calculator display do not repeat as a legitimate explanation induces conflicts 

for subsequent learning and issues a license for many erroneous errors, such as claiming that 

11257 and most other fi-actions are irrational for the same reasons. 

9.3 Limitations of the study and questions for further research 

There are several limitations to this study regarding &different areas: participants, 

scope of the study, and the experience of the researcher. 

Although a conscious attempt was made to identify the stage of concept development for 

each individual that participated in the interview stage of data collection, this information was 

found to be of limited value. What would be more interesting to know is what is the relation 

between the stage and quality of participants' understanding and the way they were taught. Have 

they had the luxury of being exposed to the ideas of irrational constructible lengths using 
- 

geometric representation of numbers? Have they had the opportunity to build the notion fi-om an 

operational platform, at least in the initial stage, or were they forced to bring the concept into 

being solely by the force of definition? Although participants at times disclosed what they 
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learned fiom their teachers and how, it is difficult to make any conclusions as the concept of 

irrational number had been acquired too far in the past to rely on this information. 

On a related issue, this study did not explore the correlation between participants' 

mathematical backgrounds and their understanding of irrationality. The number and the kind of 

university level mathematics courses taken were not considered. Incidentally, however, the three 

participants in the clinical interviews that demonstrated the most solid and evolved 

understanding of irrationality were all educated abroad (Group A participants). Although all the 

participants were in progress to become secondary teachers of mathematics, this group clearly 

demonstrated a higher level of preparedness to teach the topic. It may well be that teaching 

traditions in other regions of the world had some effect on this, but again, it would be too far 

fetched to make such claims. To gain an insight into how instructional methodology and 

didactical choice influence the formation of knowledge related to irrationality a teaching 

experiment type of study is needed. The methods proposed in Chapter 8 could be tested for that 

purpose. 

The scope of the study was limited. It did not venture into some of the key areas of 

participants' understanding, such as the incommensurability of irrational magnitudes or the proof 

of irrationality of various square roots. The concept of irrationality proved to be too complex to 

address these areas. It should be mentioned that there was a item on incommensurability 

included in the questionnaire (see Appendix A, question 8b). However, there were hardly any 

responses to the question indicating that the idea was very alien to most of the participants in this 

groui'. 

Lastly, as the data were being collected, the researcher was still learning the art of 

interviewing. The conceptions that were revealed through the interviews, especially at the 

beginning, were often not anticipated, leaving the author baffled. 



9.4 Open issues 

This study found that most participants' subject matter knowledge of irrationality was 

problematic to a degree where it is questionable whether they can teach it to others, let alone 

teach it effectively. Compounding the issue is the perception that this knowledge is not really 

useful. For example, one can work with a square root of 2 without knowing anything about 

irrational numbers. Ofien, the perception is that this part of the curriculum is only about 

memorizing definitions, and that the sole purpose for this knowledge is to be able to classifjr 

numbers and identifl them as belonging to one set or another. This seems a rather mindless task 

and, for most learners, of interest only at the time of the test. Although this is not the researcher's 

position, it would be interesting to re-examine, by conducting further research, whether the topic 

should even be taught to high school students, given that many prospective teachers according to 

this study did not understand the concept themselves. Would there be anything lost if students 

did not hear about irrational numbers until they reached university? Admittedly, this is a rather 

big and overriding question, which is not easily answered. 
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Appendix A 

The written questionnaire administered to  re-service secondary mathematics teachers (n=461 



1. Consider the following number 0.12 122 1222 1 2. . . . . . . (there is an infinite number of digits 
where the number of 2's between the 1 's keeps increasing by one). 
Is this a rational number? How do you know? 

2. Consider 53 divided by 83. Let's call this quotient M. In performing this division, calculator 
display shows 0,6385542 1687. 
Is M rational or irrational? Explain. 

3. What set do you think is "richer", rationals or irrationals (i.e. which do we have more of)? 

4. Suppose you pick a number at random from [OJ] interval (on the number line of reals). What 
is the probability of getting a rational number? 



5. Show how you would find the exact location of & on the number line. 



6. For every number listed in the table below check all the attributes that apply. 

For example, in the case of "cat" it would look like this. 

I I Animal I Mammal I Reptile I 

Natural 
number 

0.05755755575.. . 

513 1 

I The solution of the I 
equation 2" = 3 
The solution of the 
equation x = cos: 

The solution of the 
equation x = sin 60" 
The solution of the 

1 eauation 3x + 1 = 0 I 
The area of the unit 
circle 

Integer Rational 
number 

Irrational 
number 

Real 
number 



7. For each question a-h determine whether the claim is true (T) of false (F) and explain your 
thinking. 

a) If you add two irrational numbers the result is always irrational. - 

b) If you add a rational number to an irrational number the result is always irrational. - 

c) If you multiply two different irrational numbers together the result is always irrational. 

d) If you multiply a rational number by an irrational number the result is always 
irrational. 

e) It is always possible to find a rational number between any two irrational numbers. 



f )  It is always possible to find an irrational number between any two irrational numbers. 

g) It is always possible to find an irrational number between any two rational numbers. 

h) Between any two rational numbers there is always another rational number. 
- 

i) A product of two rational numbers can sometimes be irrational. 



8. Suppose you have a square whose diagonal is 20 units long. 
a) How big is the side of this square? 
b) A common unit of two lengths is a unit that fits into each of the lengths a whole number of 

times. Is it possible to find a common unit (which can be very, very small) that would 
measure both the diagonal and the side? Explain your thinking. 

9. Consider the equation x2 + y2 = c for integral values of c = (1,2,3,4,5) 
Suppose the number axes contained only rational points. For what value(s) of c would the 
graph of this equation exis<? Explain your thinking. 

* It is easy to show that any curve in the coordinate system has either infinitely many rational points or nonfat all. Reason: Suppose there is one 

rational point P on the curve. There exist infinitely many lines I- with rational slopes that intersect the given curve at point P and at another point 
1 

T.. All these points are necessarily rational. 
I 



Appendix B 

Participants' pseudonvms and their respective Groups 

This Appendix gives the Group information for all the 16 interviewees. The Group is 

determined on the basis of the performance on Item 6. This item consists of 14 sub-items, which 

are to be identified as belonging to various number sets (natural, integer, rational, irrational, 

real). For the sub-item to be considered correct, it must be correctly identified across all fields 

that apply (i.e., there is no credit for a partially correct response). 

Group A : those scoring 1 1 to1 4 

Group B: those scoring 5 to 10 

Group C: those scoring 0 to 4 

Our participants fell into these groups quite distinctly as can be seen fiom Figure 2. The number 

in brackets indicates the individual's score on Item 6. 

Group A 
Stephanie (1 4) 
Claire (12) 
Thomas* (12) 

Group B 
Ed (1 0) 
Kathryn (10) 
Kyra (9) 
Dave (8) 
Erica (8) 
Paul (7) 
Steve (7) 
Amy (6) 
Matthew (6) 

Group C 
h n a  (3) 
Katie (3) 
William (2) 
Connie (1) 

* Thomas does not appear in the text of the thesis, as all the themes that emerged in the clinical interview with him 
have been already exemplified with excerpts fiom other interviews. 


