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Abstract

Surface tension plays a significant role at the dynamic interface of free-surface flows espe-
cially at the micro-scale in capillary dominated flows. A model for accurately predicting the
formation of two-dimensional viscous droplets in vacuum or gas of negligible density and vis-
cosity resulting from axisymmetric oscillation due to surface tension is solved using Smoothed
Particle Hydrodynamics (SPH) comprised of the Navier-Stokes system and appropriate inter-
facial conditions for the free surface boundaries. The evolution of the droplet and its free
surface interface is tracked over time to investigate the effects of surface tension forces imple-
mented using a modified Continuous Surface Force (CSF) method and is compared to those
performed using Inter-particle Interaction Force (IIF). The dynamic viscous fluid and surface
tension interactions are investigated via a controlled curvature model and test cases of non-
steady oscillating droplets; attention is focused here on droplet oscillation that are released
from an initial static deformation. Accuracy of the results are attested by demonstrating that
(i) the curvature of the droplet is controlled, (ii) uniform distribution of fluid particles, (iii)
clean asymmetric forces acting on the free surface, and (iv) non-steady oscillating droplets com-
pare well with analytical and published experiment findings. The advantage of the proposed
CSF method only requires the use of physical properties of the fluid whereas the IIF method
is restricted by the requirement of tuning parameters.

1 Introduction
Surface tension plays a vital role in interfacial flows that is especially important at the micro-
scale. It is observed ubiquitously in many capillary dominated physical processes such as in sprays,
coating and printing, and occurs naturally in biological systems, for example, in water beading on
leaf surfaces and tearing in eyes. The dynamics of the shape deformation of droplets are especially
important in micro- and nano-fluidic applications where the surface area to volume ratios are high
[1, 2].

Early theoretical work and analysis of liquid droplet oscillations has been limited to droplets
that are inviscid or of negligible density and viscosity. Brown and coworkers [3, 4] analysed small-
to moderate-amplitude inviscid droplet oscillations using perturbation periodic expansions that
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extends Rayleigh’s theory [5] on infinitesimal-amplitude oscillating spheroidal droplets. Large-
amplitude droplet oscillations were studied by Lundgren and Mansour [6] for high Reynolds numbers
using boundary-integral method and was followed by Patzek et al. [7] for low-frequency oscillations
using finite-element method. Similarly, numerical models were employed by Foote [8] and Alonso [9],
who investigated nonlinear large-amplitude oscillations of viscous droplets in inactive environments
using the Marker-And-Cell (MAC) approach, and subsequently by Basaran [10] with the use of
Galerkin finite-element method. The latter work was extended by Wilkes et al. [11] and among
others [12, 13] that investigated the dynamics of surface tension effects on droplet formation during
bifurcation, micro-threading, breakup and overturn. Other solutions for droplet formation systems,
such as those by Richard et al. [14, 15, 16], employed the use of Volume-Of-Fluid (VOF) tracking
of interfaces allow handling of highly complex, transient flow evolutions involving droplet breakups,
but however lacked the ability to accurately resolve minuscule details at the interfaces due to mesh
smearing numerical limitations.

The present work explores the use of Smoothed Particle Hydrodynamics (SPH), a fully La-
grangian approach, to reliably capture and model the complex dynamic behaviour of surface tension
dominated droplet flows. This involves dynamic tracking of the interface caused by the unbalanced
cohesion forces of fluid on the free surface, shown in Figure 1. In SPH, the fluid is represented
by a system of particles that carries fluid information as it moves, making it naturally suitable for
problems with complex geometries and those that undergo large deformations.

The SPH methodology, originally developed independently by Gingold and Monaghan [17] and
Lucy [18] to explore astrophysical phenomena at the hydrodynamic scale, have found numerous
applications in modelling fluid flow problems including moving interfaces [19]. In general, the
treatment of surface tension in SPH can be broken down into 2 major groupings. The first is a
macroscopic model, also referred to as the Continuum Surface Force (CSF) approach introduced in
Brackbill et al. [20] and later popularised by Muller et al. [21] uses a single-phase method to track
the free surface interface where a surface tension force is applied. Here, a colour field is calculated
and normalised to ascertain the position of the interface and its colour gradient is used to compute
the surface normal. The resulting surface tension force then acts perpendicular to the interface
to minimise curvature of the free surface. While the CSF method is fast with implementations in
computer graphics [22], resolving physically realistic surface tension forces offsets the performance
of the methodology.

The second approach takes a microscopic view which considers cohesion forces between particles
to imitate attractive forces between molecules, known as the Inter-particle Interaction Force (IIF).
In Nugent and Posch [23], a cohesive pressure force was calculated using van der Waals equation
of state. However, computing the latter requires the use of tuning variables, which is resolution
dependent, to control the stability of the fluid particles interactions. Alternatively, Tartakovsky and
Meakin [24] introduced an approach to model the cohesion force as a combined force of short-range
repulsive and long-range attractive forces for droplets. This is developed further by Akinci et al.
[25] who proposed a combine surface tension model comprising of the cohesion and surface area
minimisation terms to model fluid-gas particles while an adhesion model is introduced for fluid-solid
particle interactions.

In the present work, a modified single-phase CSF approach is proposed and developed to ac-
curately model surface tension dominated flow of droplets. The proposed methodology introduces
the use of a modified curvature model, where the formulation will be verified against known results
numerically and those in literature. Both CSF and IIF approaches are employed to investigate
the case of an oscillating water droplet with real fluid properties; the former aims to simplify and
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eliminate the use of tuning parameters that may result in unphysical and unrealistic interactions.

2 Mathematical Formulation
The Navier-Stokes equations for conservation of mass and momentum in the Lagrangian form for
SPH are written as follows:

Dρ

Dt
= −ρ∇ · v, (1)

Dv

Dt
= −1

ρ
∇p+

1

ρ
∇ · τ +

F

ρ
, (2)

where Dρ
Dt is the total or material derivative, ∇ is the gradient, p is the pressure, v is the particle

velocity, t is the time, ρ is the density (water), τ is the viscous stress tensor and F is the body force
per unit volume that typically includes contributions such as gravity, surface tension and boundary
forces.

Here, the fluid is solved using the weakly compressible [26] form which allow the pressure
to be uniquely determined from the density field via an Equation of State (EOS). Solving the
weakly compresible form considerably reduces the computational resources required to compute
the pressure field without the need to resolve the pressure Poisson’s equation for incompressible
SPH [27]. Following Monaghan [26], Equations (1) and (2) are closed using Tait’s EOS, given by:

p = B

[(
ρ

ρ0

)γ
− 1

]
, (3)

where γ = 7 for free-surface flows, ρ0 is the reference density and B is the reference pressure
constant:

B =
ρ0c

2
s

γ
, (4)

with cs the reference speed of sound, usually between 10 to 100 times the maximum velocity of the
system in consideration, is chosen such that density variations are limited to less than 1% of the
reference density [26].

3 Numerical formulation

3.1 SPH Discretization
SPH discretisation of the Navier-Stokes equations are derived from the Dirac-delta, δ, assumption
that an arbitrary function:

f(r) =

∫
Ω

f(r′)δ(r− r′)dV, (5)

is continuous in a domain Ω and r is the position vector. A smooth approximation <f(r)> of f(r)
is obtained by replacing δ with a kernel function, W , such that:

< f(r) >=

∫
Ω

f(r′)W (|r− r′|, h)dV, (6)

where h is the smoothing length of a chosen kernel.
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The angular brackets <> from this point onwards is dropped for simplicity and readability. The
SPH discretisation of the integral interpolant in Equation (6) is then written as:

f(r) =

N∑
j=1

f(rj)W (|r− rj|, h)dVj , (7)

where N corresponds to the number of the discretised particles within the domain. The finite
volume, dVj , can be replaced by the ratio of mass, mj , to density, ρj , of a fluid transported by
particle j. Hence, the generalised SPH approximation for f(r) and its gradient are as follows:

f(r) =

N∑
j=1

f(rj)
mj

ρj
W (|r− rj|, h), (8)

and

∇f(r) =

N∑
j=1

f(rj)
mj

ρj
∇W (|r− rj|, h). (9)

As in finite-difference methods, the gradients in Equation (9) can be written in several ways in
SPH formalism [28]. Among them are symmetric and anti-symmetric ones and interested readers
are referred to Liu and Liu [29] and Violeau [28]. In the same way, several SPH forms for the
divergence field can be established.

The kernel function, W , must satisfy the following conditions:

Symmetric condition:
W (r, h) = W (−r, h). (10)

Limit condition:
lim
h→0

W (r, h) = δ(r). (11)

Unity condition: ∫
Ω

W (r, h)dr = 1. (12)

In this study, the Wendland kernel:

W (q, h) = αd

{
(2− 2q/3)4(1 + 4q/3) 0 < q ≤ 3
0 q > 3,

(13)

where q = |r|/h and αd = 7/(144πh2) in two-dimensional space, is used mainly because is able to
replicate the dissipation mechanisms more accurately. This characteristic is shown for both low and
high Reynolds numbers where it prevents clustering effects from noisy vorticity fields [30].

3.2 Continuity equation
The continuity Equation (1) discretised using the SPH formulation is re-written as:

Dρi
Dt
≈

N∑
j

mjvij · ∇iWij , (14)

4



where i represent the particle of interest, j the neighbour particle within the support domain, ∇i is
the gradient of the kernel function with respect to particle i, vij = vi − vj is the relative velocity
and Wij is kernel function of particle i taken with respect to particle j.

Each initial particle is initialised using a reference density, ρ0, and the rate of density change,
Dρ/Dt, is caused by relative movement between the particles.

3.3 Momentum equation
The Navier-Stokes momentum equation is discretised in SPH with the pressure and viscosity terms
using the standard forms following those in Gingold and Monaghan [31], which conserves linear and
angular momentum, given by:

Dvi
Dt

= −
N∑
j=1

mj

(
pj
ρ2
j

+
pi
ρ2
i

)
· ∇iWij +

N∑
j=1

mj

(
µi + µj
ρiρj

)
vij

(
1

rij

dWij

drij

)
+ Fi, (15)

where µ is the fluid viscosity and rij = |rij| and rij = ri − rj.

3.4 Time integration
The Verlet algorithm [32], is used for time integration. The updated density, velocity and position
for each particle are calculated from the following:

ρn+1
i = ρn−1

i + 2∆t

(
Dρi
Dt

)n
, (16)

vn+1
i = vn−1

i + 2∆t

(
Dvi
Dt

)n
, (17)

rn+1
i = rni + vni ∆t+

∆t2

2

(
Dvi
Dt

)n
. (18)

It should be noted that the time integration in Equations (16)-(18) are decoupled and an addi-
tional Euler step is required:

ρn+1
i = ρni + ∆t

(
Dρi
Dt

)n
, (19)

vn+1
i = vni + ∆t

(
Dvi
Dt

)n
, (20)

at appropriate M intervals; the usual suggested value for M = 50 used to prevent the solution at
odd and even steps from diverging.

The size of the time step are automatically chosen using the CFL conditions [33]. In SPH, this
is given by:

∆t1 ≤
h

cs
, (21)

to restrict the maximum rate of interaction propagation to not exceed the physical rate. Monaghan
[34] suggested 2 additional expressions for the viscous dissipation and the external forces, given as
follows:

∆t2 = min
i

h

cs + 0.6(αcs + βmaxi,j µij)
, (22)
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∆t3 = min
i

(√
h

|f |

)
, (23)

where α and β are dimensionless coefficient, f is a force per unit mass, to be sure that the force
exerted on particles are combined correctly.

From the above requirements the time step taken is chosen to be the minimum of Equations (21)-
(23) with a safety coefficient of 1/4 as suggested by Monaghan [34]:

∆t =
1

4
min(∆t1,∆t2,∆t3). (24)

3.5 Surface tension
The present work proposed a modified single phase CSF approach to the original two phase method
of Brackbill et al. [20]. Here, the surface tension force per unit mass will be applied only to the
particles on the free surface via:

fs =
σκnδε
ρ

, (25)

where κ is the local curvature, n is the unit surface normal vector at the interface pointing inwards
to the fluid and δε is the surface delta function. δε is set to 1/∆s at the interface and ∆s takes
the value of the initial particle separation. Equation (25) is added as an additional body force in
Equation (15) to provide the surface tension force.

A colour field, c, is used to determine the interface at the free surface [20]. A smoothed colour
field at particle i is calculated using:

ci =

N∑
j

c
mj

ρj
Wij , (26)

where in the original CSF method, the above equation is employed to track the position of surface
particles, but here, the following divergence of particle position proposed in Lee and Moulinec [35]
is used to do the same:

∇ · r =
∑
j

mj

ρj
rij · ∇iWij . (27)

For two-dimensional problems, ∇· r is approximately 2.0 for particles with a full kernel support
and smaller for particles adjacent to the free surface. A threshold value of ∇ · r ≤ 1.5 following Lee
and Moulinec [35] is used to determine particles located at the interface. The unit surface normal
in Equation (25) is calculated from the colour field gradient at the free surface with:

ni =
∇ci
|∇ci|

. (28)

Adami et al. [36] proposed the approximated divergence for calculating the surface curvature
using both the liquid and gas phases. However, to calculate the approximated divergence of the
surface curvature using only a single liquid phase in the present study, the formulation for κ is
modified by introducing a control parameter, ε, given by:

κ = ε · d
∑
j nijVj∇W∑
j |rij|Vj

∂W
∂rij

, (29)
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where d is the spatial dimension of the problem, nij = ni − nj, Vj is the volume of the neighbour
particles, and ε = 0.5 is found to be acceptable given that ignoring the gas phase requires that the
original form in Adami et al. [36] to be halved.

4 Results and Discussion

4.1 Droplet Curvature
The first case explores the accuracy and validity of the proposed CFS approximated divergence
curvature formulation of Equation (29) on a 2-dimensional water droplet. Following Zhang [37],
a circular water droplet of radius, Rd = 1 mm, density, ρ0 = 1000, viscosity, µ = 0.01, and
reference sound speed sufficient for incompressibility, cs = 5.0, is considered. Here, 3 different
particle resolutions were also chosen to investigate the sensitivity of the proposed CSF approach
compared to the competing IIF approach [24] via initial particle spacing distribution or separation
of ∆s = {0.1, 005, 0025} mm giving particle resolutions of N = {331, 1261, 4921}, respectively.

The circular droplet is defined uniformly to be geometrical evenly distributed using a simple
algorithm to calculate their circumferential ring positions in the polar form, given by:

xa = b∆s cos(kθ), (30)
ya = b∆s sin(kθ), (31)

where a is the number of particles between 0, 1, 2, ..., to (N − 1), while b varies from 0, 1, 2, ...,
to (Nc − 1), with Nc describing the number of circular circumferential layers such that ∆s =
Rd/(Nc − 1). The value for k varies between 0, 1, 2, ..., to (Np − 1) helps define the number of
particles in each circumferential layer with Np = 1 when b = 0 and Np = 6 for subsequent layers.
These particles are spread out evenly at angles given by, θ = 2π/Np, from one another within the
same layer along the circumferential rings.

The steady-state results presented in Figure 2 shows that the approximated surface curvature
formulation in CSF approach successfully captures fluid particles located at the boundary interface
via Equation (27) and computing Equation (29) directs the normal uniformly and asymmetrically
towards the centre of the droplet with κ ≈ 1. The consistency of the CSF approach is replicated
exactly with varying resolutions and the fluid particles are evenly and orderly distributed forming
a perfect circular droplet. In comparison, the same case is performed using the IIF approach and
the solution clearly shows large non-uniform variations in curvature values which result in uneven
asymmetric force acting on the boundary interface towards the internal fluid particles, making it it
difficult to recover a perfect circular shape. In addition, clumping of fluid particles at the interface
due to the asymmetric build up of localised cohesion pressure forces between competing short-
range repulsive and long-range attractive forces is observed and this becomes more prevalent at
higher resolutions. The CSF approach shows no indications of numerical corruptions with particle
resolution. Comparison with the analytical solution:

κ =
1

R
, (32)

where R is the equilibrium radius of the droplet, showed that an error of 0.4% is observed using
the CSF approach and approximately 3.0% from IIF.

Note that all subsequent results will use, R, as the equilibrium radius and, r, to represent the
equatorial axis in the radial x-direction for the case of oscillating droplets.
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4.2 Droplet Oscillation
The following considers the case of a 2-dimensional oscillating water droplet, 2 mm in radius, that
is released from an initial oblate ellipsoidal shape at rest. An initial shape is described using the
following expression: (

x∗i
y∗i

)
=

√
2

sin θ

(
xi sin (θ/2)
yi cos (θ/2)

)
, (33)

where the angle, θ = επ, and the eccentricity, ε = 0.55.
The period of oscillation is given analytically by:

T = 2π

√
R3ρ

6σ
, (34)

and using the proposed CSF approach, the period of oscillation of water is readily and naturally
obtained from the computation of surface tension forces exerted on the free-surface. On the other
hand, the IIF approach of Tartakovsky and Meakin [24] utilises an inter-particle surface tension
force:

Fij =

 sij cos

(
1.5π

3h
|rij |

)
rij
|rij |

, |rij | ≤ 3h

0, |rij | > 3h,
(35)

where Fij is the pair-wise molecular force (body force) while sij is the strength of the force between
particles and its value depends on the type of fluid used. In the present case sij = 0.012 corresponds
to water for the same droplet size.

Figure 3 shows the evolution of droplet radius with time taken along the cross-section in the
x-direction. Both the IIF and CSF methods yields the same analytical period of 0.027 s for water
with an approximate error of 0.5%. However, the results showed that the IIF approach damps
very quickly and reaches steady state in only 4 oscillations with a cut off amplitude of 2.125 mm.
This is due to the ever-present dissipating internal inter-particle forces within the droplet. On the
contrary, the droplet modelled using the proposed CSF approach oscillates far longer and damps
out in approximately 60 oscillations. Comparisons with experimental results in Apfel et al. [38]
reported that a squeezed droplet of 6.6 cm3 in micro-gravity oscillates as much as 82 times. The
results obtained from the proposed CSF approach was performed in 2-dimensions and one would
expect that the surface tension contribution would be smaller and thus the number of oscillations
will be fewer compared to 3-dimensional ones.

Figure 4 shows the droplet oscillation snapshots taken at fixed time intervals to compare droplet
evolution and particle distribution of both CSF and IIF approaches in SPH. It clearly shows the
resultant distinctive particle arrangements between both methodologies. The former has an obvious
particle layer at the free surface interface due to the asymmetrical internal inter-particle forces and
has been similarly observed in Nugent and Posch [23]. The CSF approach shows a much cleaner and
evenly distribution of particles. The use of the Wendland kernel contributed to minimising the effect
of tensile instability [30] while the surface tension forces act only at the interface boundaries. Small
voids can be seen for these particle resolution, especially during the initial first few oscillations,
but these disappear when high particle resolution are used, see Figure 5. In addition, droplets at
higher resolution tend to hold their shape better but this does not mean that they oscillate larger
in amplitude and longer in time. Figure 6 shows the maximum oblate amplitude of the oscillating
droplet decay from the equatorial axis at long time scales using the CFS approach. The reduction
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in amplitude of the oscillating droplet maintains roughly the same rate initially and shows that as
the resolution increases, the amplitude of the oscillation decays much faster and resulted in slightly
smaller number of total oscillations, inline with what one would expect from a more tightly packed
distribution.

The effect of using the weakly compressible assumption is supported by analysing the changes
in density over the first period of oscillation where changes in density is largest. This is shown in
Figure 7 that the maximum error in density variation is worst at t = 0.015s giving an error value of
0.6%. Nonetheless, the overall density profile is relatively smooth and this smooth variation persist
throughout the remaining oscillations. The results obtained are consistent and accurate within
acceptable limits with those of the weakly compressible assumption given in Monaghan [26].

5 Conclusion
A new proposed CSF approach for capturing the surface tension effects on the evolution of free
surface oscillation of droplets is implemented by incorporating an adaptive SPH interface tracking
scheme. To demonstrate its effectiveness, the proposed method is compared against a rival IIF
approach and with those reported in literature. From the results, the CSF method yields a period
of oscillation comparable to the analytical period of 0.027 s for water. Based on the above, the
CSF approach can be readily applied without the need to tune arbitrary variables compared to the
requirement in the IIF approach, due to the latter having to specify the inter-particle surface tension
force strength. Moreover, the CSF approach is able to predict the oscillation of droplets with good
qualitative results similar to those observed experimentally and also produces more ordered particle
distributions. Future work will include extending the model to investigate 3-dimensional surface
tension dominated flows in oscillating droplets and their potential applications in micro-mixing
processes such as those observed in coalescence of binary drops.
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Figure 1: Unbalanced surface tension force at the interface of a fluid droplet.
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Figure 2: Steady-state droplet shape with curvature values applied at the interface at different
resolutions using (i) the IIF approach (a) to (c), and (ii) the proposed CSF approach (d) to (f).
Colours on the interface indicates the uniformity of the asymmetric force from the divergence of
surface curvature exerted on the internal fluid particles.
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Figure 3: Time evolution of the droplet radius displacement from the equatorial axis in the radial
x-direction of the oscillating droplet as it evolves between the 2-dimensional prolate and oblate
modes in SPH using the IIF and proposed CSF approaches.
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Figure 4: Evolution of the droplet oscillation at different time intervals using the IIF (left) and
proposed CSF (right) approaches. The IIF approach clearly shows clumping of fluid particles at the
interface due to the build up of cohesion pressure forces between competing short-range repulsive and
long-range attractive forces, while the CFS approach provides better particle distribution uniformity
but at times the internal layer below the interface may exhibit small void pockets.
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Figure 5: Droplet oscillation snapshots taken at different time intervals using the proposed CSF
approach computed at different particle resolutions: (a) 1261, (b) 2791, and (c) 4921. The void
pockets disappear with improved resolution and the period of oscillation stayed the same throughout
the solution.
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Figure 6: Maximum oblate amplitude of the oscillating droplet decay from the equatorial axis in the
radial x-direction for long time scales computed using the CSF approach at different SPH particle
resolutions.
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Figure 7: Density distribution of the oscillating droplet using the proposed SPH CSF approach at
different time intervals during the first period of oscillation. The droplet is initially released from
rest at t = 0 with a static shape defined in an oblate 2-dimensional mode.
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