127 research outputs found

    Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex.

    Get PDF
    The high storage capacity of the episodic memory system relies on distinct representations for events that are separated in time and space. The spatial component of these computations includes the formation of independent maps by hippocampal place cells across environments, referred to as global remapping. Such remapping is thought to emerge by the switching of input patterns from specialized spatially selective cells in medial entorhinal cortex (mEC), such as grid and border cells. Although it has been shown that acute manipulations of mEC firing patterns are sufficient for inducing hippocampal remapping, it remains unknown whether specialized spatial mEC inputs are necessary for the reorganization of hippocampal spatial representations. Here, we examined remapping in rats without mEC input to the hippocampus and found that highly distinct spatial maps emerged rapidly in every individual rat. Our data suggest that hippocampal spatial computations do not depend on inputs from specialized cell types in mEC

    The role of the medial entorhinal cortex in spatial and temporal coding

    Get PDF
    The hippocampus (HIPP) is the core of a memory system crucial for the formation of new episodic (unique event) memories in humans and episodic-like memories (for what, where and when) in rodents. Its prevalent role in the formation of memories is thought to rely on a variety of specialized neural network computations: It is for example believed that hippocampal networks associate information about different aspects of an experience (such as a particular event and the place at which the event occurred) into a coherent memory trace. In order to prevent interference between memories that are similar (such as two different experiences within the same place) each memory is assigned a neural code that is highly distinct from those for previously acquired memories. Finally, hippocampal networks are thought to fuse memories for individual fragments of an experience into a temporally structured sequence which represent an episode. Information about different aspects of an experience reaches the HIPP via the entorhinal cortex (EC), which is its major cortical input structure. Electrophysiological single-unit recordings in behaving rodents revealed that in particular the medial division of the EC (MEC) contains a variety of cell types that are specialized in the representation of spatial and self-motion information. It is therefore believed that input from the MEC supports the spatial component of memory processing in the HIPP. Here, we tested the long-standing hypothesis that hippocampal spatial coding relies on input from the MEC. This was achieved by performing extensive, bilateral excitotoxic lesions of the MEC and placing electrode arrays into the CA1 pyramidal cell layer of the HIPP. Hippocampal neural computations were assessed by recording extracellular action potentials (APs) from individual neurons as rats explored open field environments. The firing patterns of hippocampal neurons are known to correlate with the rat’s behavior, in that each cell fires APs at restricted proportions of the environment, forming spatial receptive fields (so-called place fields). The spatial precision and organization of those place fields was examined in control and MEC-lesioned rats. We found that hippocampal neurons retained their spatial selectivity after MEC lesions, even though the precision and stability of the hippocampal spatial code were reduced. The ability to form distinct spatial representation for different environments was entirely intact in MEC-lesioned rats. Contrary to most contemporary theories of hippocampo-entorhinal function, our findings suggest that the MEC is not the only determinant of hippocampal spatial computations and that sources lacking sophisticated spatial firing, such as the lateral division of the entorhinal cortex (LEC) and local hippocampal network computations are sufficient to support this function. Following the finding that spatial firing was partly preserved in MEC-lesioned rats, we tested whether the MEC is necessary for the temporal organization of spike timing within the place field. Hippocampal place cells that are activated along the rat’s trajectory through space are thought to be linked into synaptically connected neuronal sequences via a mechanisms referred to as hippocampal theta phase precession (hTPP). Theta phase precession reflects the temporal distribution of APs within each place field with reference to the local field potential (LFP) oscillation at theta frequency (4 to 10 Hz). We found that hTPP was strongly disrupted in MEC-lesioned rats, demonstrating that the MEC is necessary for the temporal organization of hippocampal spatial firing. Cognitive functions that rely on sequentially activated place cells are thus likely to rely on the MEC. In summary, the presented data demonstrate that the contribution of the MEC to hippocampal spatial coding is less predominant than postulated by contemporary theories of hippocampo-entorhinal function. In addition, the findings suggest that the MEC, which is widely considered a spatial processing center of the brain, supports memory through the temporal organization of hippocampal spatial firing

    Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach

    Get PDF
    For the first time, the manganese gallide (MnGa4) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnOx‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnOx minerals with distinct structures and induced defects: birnessite δ‐MnO2, feitknechtite β‐MnOOH, and hausmannite α‐Mn3O4. The abundance and intrinsic stabilization of MnIII/MnIV active sites in the three MnOx phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa4 precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm−2 with a durability of more than five days.DFG, 390540038, EXC 2008: UniSysCatTU Berlin, Open-Access-Mittel - 201

    The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.

    Get PDF
    The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC

    Impaired path integration in mice with disrupted grid cell firing

    Get PDF
    Path integration (PI) is a highly conserved, self-motion-based navigation strategy. Since the discovery of grid cells in the medial entorhinal cortex, neurophysiological data and computational models have suggested that these neurons serve PI. However, more direct empirical evidence supporting this hypothesis has been missing due to a lack of selective manipulations of grid cell activity and suitable behavioral assessments. Here we report that selective disruption of grid cell activity in mice can be achieved by removing NMDA glutamate receptors from the retro-hippocampal region and that disrupted grid cell firing accounts for impaired PI performance. Notably, the genetic manipulation did not affect the activity of other spatially selective cells in the medial entorhinal cortex and the hippocampus. By directly linking grid cell activity to PI, these results contribute to a better understanding of how grid cells support navigation and spatial memory

    Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.

    Get PDF
    Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays

    PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response

    Get PDF
    Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’

    In-situ X-Ray Absorption Near Edge Structure Spectroscopy of a Solid Catalyst using a Laboratory-Based Set-up

    Get PDF
    An in-situ laboratory-based X-ray Absorption Near Edge Structure (XANES) Spectroscopy set-up is presented, which allows performing long-term experiments on a solid catalyst at relevant reaction conditions of temperature and pressure. Complementary to research performed at synchrotron radiation facilities the approach is showcased for a Co/TiO2 Fischer-Tropsch Synthesis (FTS) catalyst. Supported cobalt metal nanoparticles next to a (very small) fraction of cobalt(II) titanate, which is an inactive phase for FTS, were detected, with no signs of re-oxidation of the supported cobalt metal nanoparticles during FTS at 523 K, 5 bar and 200 h, indicating that cobalt metal is maintained as the main active phase during FTS.Peer reviewe

    Silicon oxycarbonitride ceramic containing nickel nanoparticles from design to catalytic application

    Get PDF
    Nickel containing silicon oxycarbonitride ceramic nanocomposites are synthesized from hydrous nickel acetate and poly vinyl silazane Durazane 1800 or perhydropolysilazane NN120 20 A PHPS . A room temperature chemical reaction results in Ni containing polysilazane precursors which are transformed into ceramic nanocomposites with nickel nanoparticles 2 4 nm upon pyrolysis at elevated temperatures 700 1100 C under an argon atmosphere. The ceramic nanocomposites derived from the Durazane 1800 Ni precursor by the thermolysis process at 700 and 900 C manifest a microporous structure with a BET specific surface area of amp; 8764;361 and amp; 8764;232 m2 g amp; 8722;1, respectively. In contrast, all pyrolyzed samples derived from the PHPS Ni precursor exhibit a nonporous structure. The Ni SiOCN ceramic nanocomposites tested in a plug flow fixed bed reactor display significant catalytic activity in dry methane reforming to syngas. The highest CH4 reaction rate of 0.18 mol min amp; 8722;1 gNi amp; 8722;1 is observed at 800 C for the sample derived from the PHPS Ni precursor by pyrolysis at 900 C. All these make the materials developed in this work, i.e. nickel nanoparticles in situ formed in the SiOCN ceramic matrix, as promising candidates for heterogeneous catalysi
    corecore