56 research outputs found

    Somatic alpha-synuclein mutations in Parkinson's disease: Hypothesis and preliminary data.

    Get PDF
    Alpha-synuclein (SNCA) is crucial in the pathogenesis of Parkinson's disease (PD), yet mutations in the SNCA gene are rare. Evidence for somatic genetic variation in normal humans, also involving the brain, is increasing, but its role in disease is unknown. Somatic SNCA mutations, arising in early development and leading to mosaicism, could contribute to PD pathogenesis and yet be absent or undetectable in DNA derived from peripheral lymphocytes. Such mutations could underlie the widespread pathology in PD, with the precise clinical outcome dependent on their type and the timing and location of their occurrence. We recently reported a novel SNCA mutation (c.150T>G, p.H50Q) in PD brain-derived DNA. To determine if there was mosaicism for this, a PCR and cloning strategy was used to take advantage of a nearby heterozygous intronic polymorphism. No evidence of mosaicism was found. High-resolution melting curve analysis of SNCA coding exons, which was shown to be sensitive enough to detect low proportions of 2 known mutations, did not reveal any further mutations in DNA from 28 PD brain-derived samples. We outline the grounds that make the somatic SNCA mutation hypothesis consistent with genetic, embryological, and pathological data. Further studies of brain-derived DNA are warranted and should include DNA from multiple regions and methods for detecting other types of genomic variation. © 2013 Movement Disorder Society

    Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (∼50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD

    Molecular Pathology of Lewy Body Diseases

    Get PDF
    Lewy body diseases are characterized by the presence of Lewy bodies, alpha-synuclein(AS)-positive inclusions in the brain. Since their main component is conformationally modified AS, aggregation of the latter is thought to be a key pathogenic event in these diseases. The analysis of inclusion body constituents gives additional information about pathways also involved in the pathology of synucleinopathies. Widespread mitochondrial dysfunction is very closely related to disease development. The impairment of protein degradation pathways, including both the ubiquitin-proteasome system and the autophagy-lysosome pathway also play an important role during the development of Lewy body diseases. Finally, differential expression changes of isoforms corresponding to genes primarily involved in Lewy body formation point to alternative splicing as another important mechanism in the development of Parkinson’s disease, as well as dementia with Lewy bodies. The present paper attempts to give an overview of recent molecular findings related to the pathogenesis of Lewy body diseases

    Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner

    Get PDF
    © 2010 Büttner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Parkinson’s disease is characterized by the presence of cytoplasmic inclusions, known as Lewy bodies, containing both aggregated α-synuclein and its interaction partner, synphilin-1. While synphilin-1 is known to accelerate inclusion formation by α-synuclein in mammalian cells, its effect on cytotoxicity remains elusive. Methodology/Principal Findings: We expressed wild-type synphilin-1 or its R621C mutant either alone or in combination with α-synuclein in the yeast Saccharomyces cerevisiae and monitored the intracellular localization and inclusion formation of the proteins as well as the repercussions on growth, oxidative stress and cell death. We found that wild-type and mutant synphilin-1 formed inclusions and accelerated inclusion formation by α-synuclein in yeast cells, the latter being correlated to enhanced phosphorylation of serine-129. Synphilin-1 inclusions co-localized with lipid droplets and endomembranes. Consistently, we found that wild-type and mutant synphilin-1 interacts with detergent-resistant membrane domains, known as lipid rafts. The expression of synphilin-1 did not incite a marked growth defect in exponential cultures, which is likely due to the formation of aggresomes and the retrograde transport of inclusions from the daughter cells back to the mother cells. However, when the cultures approached stationary phase and during subsequent ageing of the yeast cells, both wild-type and mutant synphilin-1 reduced survival and triggered apoptotic and necrotic cell death, albeit to a different extent. Most interestingly, synphilin-1 did not trigger cytotoxicity in ageing cells lacking the sirtuin Sir2. This indicates that the expression of synphilin-1 in wild-type cells causes the deregulation of Sir2-dependent processes, such as the maintenance of the autophagic flux in response to nutrient starvation. Conclusions/Significance: Our findings demonstrate that wild-type and mutant synphilin-1 are lipid raft interacting proteins that form inclusions and accelerate inclusion formation of α-synuclein when expressed in yeast. Synphilin-1 thereby induces cytotoxicity, an effect most pronounced for the wild-type protein and mediated via Sir2-dependent processes.This work was supported by grants from IWT-Vlaanderen (SBO NEURO-TARGET), the K.U.Leuven Research Fund (K.U.Leuven BOF-IOF) and K.U.Leuven R&D to JW, a Tournesol grant from Egide (Partenariat Hubert Curien) in France in collaboration with the Flemish Ministry of Education and the Fund of Scientific Research of Flanders (FWO) in Belgium to JW, MCG and LB, a shared PhD fellowship of the EU-Marie Curie PhD Graduate School NEURAD to JW, MCG and LB, grants of the Austrian Science Fund FWF (Austria) to FM and DR (S-9304-B05), to FM and SB (LIPOTOX), and to SB (T-414-B09; Hertha-Firnberg Fellowship) and an EMBO Installation Grant, a Marie Curie IRG, and a grant of the Fundação para a Ciência e Tecnologia (PTDC/SAU-NEU/105215/2008) to TFO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore