56 research outputs found

    Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Get PDF
    To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC) for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA) and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH) or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size) in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy

    Physiological and pathological roles of LRRK2 in the nuclear envelope integrity

    Get PDF
    Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson’s disease but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss of function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations

    SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation

    Get PDF
    α-Synuclein accumulation is a pathological hallmark of Parkinson’s disease (PD). Ubiquitinated α-synuclein is targeted to proteasomal or lysosomal degradation. Here, we identify SUMOylation as a major mechanism that counteracts ubiquitination by different E3 ubiquitin ligases and regulates α-synuclein degradation. We report that PIAS2 promotes SUMOylation of α-synuclein, leading to a decrease in α-synuclein ubiquitination by SIAH and Nedd4 ubiquitin ligases, and causing its accumulation and aggregation into inclusions. This was associated with an increase in α-synuclein release from the cells. A SUMO E1 inhibitor, ginkgolic acid, decreases α-synuclein levels by relieving the inhibition exerted on α-synuclein proteasomal degradation. α-Synuclein disease mutants are more SUMOylated compared with the wild-type protein, and this is associated with increased aggregation and inclusion formation. We detected a marked increase in PIAS2 expression along with SUMOylated α-synuclein in PD brains, providing a causal mechanism underlying the up-regulation of α-synuclein SUMOylation in the disease. We also found a significant proportion of Lewy bodies in nigral neurons containing SUMO1 and PIAS2. Our observations suggest that SUMOylation of α-synuclein by PIAS2 promotes α-synuclein aggregation by two mutually reinforcing mechanisms. First, it has a direct proaggregatory effect on α-synuclein. Second, SUMOylation facilitates α-synuclein aggregation by blocking its ubiquitin-dependent degradation pathways and promoting its accumulation. Therefore, inhibitors of α-synuclein SUMOylation provide a strategy to reduce α-synuclein levels and possibly aggregation in PD

    Molecular Pathology of Lewy Body Diseases

    Get PDF
    Lewy body diseases are characterized by the presence of Lewy bodies, alpha-synuclein(AS)-positive inclusions in the brain. Since their main component is conformationally modified AS, aggregation of the latter is thought to be a key pathogenic event in these diseases. The analysis of inclusion body constituents gives additional information about pathways also involved in the pathology of synucleinopathies. Widespread mitochondrial dysfunction is very closely related to disease development. The impairment of protein degradation pathways, including both the ubiquitin-proteasome system and the autophagy-lysosome pathway also play an important role during the development of Lewy body diseases. Finally, differential expression changes of isoforms corresponding to genes primarily involved in Lewy body formation point to alternative splicing as another important mechanism in the development of Parkinson’s disease, as well as dementia with Lewy bodies. The present paper attempts to give an overview of recent molecular findings related to the pathogenesis of Lewy body diseases

    Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Get PDF
    To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC) for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA) and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH) or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size) in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy
    • 

    corecore