43 research outputs found

    Pertactin Is Required for Bordetella Species To Resist Neutrophil-Mediated Clearance

    Get PDF
    Pertactin (PRN) is an autotransporter protein produced by all members of the Bordetella bronchiseptica cluster, which includes B. pertussis, B. parapertussis, and B. bronchiseptica. It is a primary component of acellular pertussis vaccines, and anti-PRN antibody titers correlate with protection. In vitro studies have suggested that PRN functions as an adhesin and that an RGD motif located in the center of the passenger domain is important for this function. Two regions of PRN that contain sequence repeats (region 1 [R1] and R2) show polymorphisms among strains and have been implicated in vaccine-driven evolution. We investigated the role of PRN in pathogenesis using B. bronchiseptica and natural-host animal models. A Δprn mutant did not differ from wild-type B. bronchiseptica in its ability to adhere to epithelial and macrophage-like cells in vitro or to establish respiratory infection in rats but was cleared much faster than wild-type bacteria in a mouse lung inflammation model. Unlike wild-type B. bronchiseptica, the Δprn mutant was unable to cause a lethal infection in SCID-Bg mice, but, like wild-type bacteria, it was lethal for neutropenic mice. These results suggest that PRN plays a critical role in allowing Bordetella to resist neutrophil-mediated clearance. Mutants producing PRN proteins in which the RGD motif was replaced with RGE or in which R1 and R2 were deleted were indistinguishable from wild-type bacteria in all assays, suggesting that these sequences do not contribute to PRN function

    Contribution of Bordetella Filamentous Hemagglutinin and Adenylate Cyclase Toxin to Suppression and Evasion of Interleukin-17-Mediated Inflammation

    Get PDF
    ABSTRACT Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica , which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica . We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4 + T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica , which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a Δ cyaA strain caused decreased production of IL-1β and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a Δ cyaA Δ fhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity

    Characterisation of aerotolerant forms of a robust chicken colonizing Campylobacter coli

    Get PDF
    Campylobacter contaminated poultry meat is a major source of human foodborne illness. Campylobacter coli strain OR12 is a robust colonizer of chickens that was previously shown to outcompete and displace other Campylobacter strains from the chicken’s gastrointestinal tract. This strain is capable of aerobic growth on blood agar. Serial aerobic passage increased this aerotolerance as assessed by quantitative assays for growth and survival on solid media. Aerotolerance was also associated with increased peroxide stress resistance. Aerobic passage did not alter cellular morphology or motility or hinder the microaerobic growth rate. Colonization of broiler chickens by aerotolerant C. coli OR12 was significantly lower than the wild-type strain at 3 days after challenge but not by 7 days, suggesting adaptation had occurred. Bacteria recovered from chickens had retained their aerotolerance, indicating this trait is stable. Whole genome sequencing enabled comparison with the wild-type sequence. Twenty-three point mutations were present, none of which were in genes known to affect oxidative stress resistance. Insertions or deletions caused frame shifts in several genes including, phosphoglycerate kinase and the b subunit of pyruvate carboxylase that suggest modification of central and carbohydrate metabolism in response to aerobic growth. Other genes affected include those encoding putative carbonic anhydrase, motility accessory factor, filamentous haemagglutinin, and aminoacyl dipeptidase proteins. Aerotolerance has the potential to affect environmental success and survival. Increased environmental survival outside of the host intestinal tract may allow opportunities for transmission between hosts. Resistance to oxidative stress may equate to increased virulence by virtue of reduced susceptibility to oxidative free radicals produced by host immune responses. Finally, resistance to ambient atmospheric oxygen may allow increased survival on chicken skin, and therefore constitutes an increased risk to public health

    Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria

    Get PDF
    Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilisation and remineralisation of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterised members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P

    Prevalence and Genetic Characterization of Pertactin-Deficient Bordetella pertussis in Japan

    Get PDF
    The adhesin pertactin (Prn) is one of the major virulence factors of Bordetella pertussis, the etiological agent of whooping cough. However, a significant prevalence of Prn-deficient (Prn−) B. pertussis was observed in Japan. The Prn− isolate was first discovered in 1997, and 33 (27%) Prn− isolates were identified among 121 B. pertussis isolates collected from 1990 to 2009. Sequence analysis revealed that all the Prn− isolates harbor exclusively the vaccine-type prn1 allele and that loss of Prn expression is caused by 2 different mutations: an 84-bp deletion of the prn signal sequence (prn1ΔSS, n = 24) and an IS481 insertion in prn1 (prn1::IS481, n = 9). The frequency of Prn− isolates, notably those harboring prn1ΔSS, significantly increased since the early 2000s, and Prn− isolates were subsequently found nationwide. Multilocus variable-number tandem repeat analysis (MLVA) revealed that 24 (73%) of 33 Prn− isolates belong to MLVA-186, and 6 and 3 Prn− isolates belong to MLVA-194 and MLVA-226, respectively. The 3 MLVA types are phylogenetically closely related, suggesting that the 2 Prn− clinical strains (harboring prn1ΔSS and prn1::IS481) have clonally expanded in Japan. Growth competition assays in vitro also demonstrated that Prn− isolates have a higher growth potential than the Prn+ back-mutants from which they were derived. Our observations suggested that human host factors (genetic factors and immune status) that select for Prn− strains have arisen and that Prn expression is not essential for fitness under these conditions

    Texture Classification for 3D Urban Map

    No full text
    This paper proposes a method to control texture resolution for rendering large-scale 3D urban maps. Since on the 3D maps texture data generally tend to be far larger than geometry information such as vertices and triangles, it is more effective to reduce the texture by exploiting the LOD (Level of Detail) in order to decrease whole data size. For this purpose, we propose a new method to control the resolution of the texture. In our method we classify the textures to four classes based on their salient features. The appropriate texture resolutions are decided based on the classification resulsts, their rendered sizes on a display, and their level of importance. We verify the validity of our texture classification algorithm by applying it to the large-scale 3D urban map rendering
    corecore