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Summary

Bacteria that inhabit the rhizosphere of agricultural
crops can have a beneficial effect on crop growth.
One such mechanism is the microbial-driven solubili-
zation and remineralization of complex forms of
phosphorus (P). It is known that bacteria secrete vari-
ous phosphatases in response to low P conditions.
However, our understanding of their global proteomic
response to P stress is limited. Here, exoproteomic
analysis of Pseudomonas putida BIRD-1 (BIRD-1),
Pseudomonas fluorescens SBW25 and Pseudomo-
nas stutzeri DSM4166 was performed in unison with
whole-cell proteomic analysis of BIRD-1 grown under
phosphate (Pi) replete and Pi deplete conditions.
Comparative exoproteomics revealed marked hetero-
geneity in the exoproteomes of each Pseudomonas
strain in response to Pi depletion. In addition to well-
characterized members of the PHO regulon such as
alkaline phosphatases, several proteins, previously
not associated with the response to Pi depletion,
were also identified. These included putative nucle-

*For correspondence. E-mail i.lidbury@warwick.ac.uk; Tel. +44 (0)
24 765 75874; Fax +44 (0)24 7652 2052.

ases, phosphotriesterases, putative phosphonate
transporters and outer membrane proteins. More-
over, in BIRD-1, mutagenesis of the master regulator,
phoBR, led us to confirm the addition of several
novel PHO-dependent proteins. Our data expands
knowledge of the Pseudomonas PHO regulon, includ-
ing species that are frequently used as bioinoculants,
opening up the potential for more efficient and
complete use of soil complexed P.

Introduction

Phosphorus (P) is an essential macroelement for all living
biota. In soil, microorganisms and plants compete for P. It
is therefore essential that a sufficient amount of P is avail-
able for agricultural crops to sustain their yields. Plants
acquire P as inorganic orthophosphate (Pi) from the soil
solution (Vance et al., 2003; White and Hammond, 2008).
The concentration of Pi in the soil solution is controlled by
chemical and biological processes which fix and release Pi
through complex interactions between the soil, soil micro-
organisms and plant roots (Richardson et al., 2009; Shen
et al., 2011). To overcome these limitations in agricultural
systems, inorganic fertilizers, derived from non-renewable
Pi rocks, are supplied to crops and pastures (Vance et al.,
2003; Lopez-Arredondo et al., 2014). Over 85% of mined
P is used in food production (Heffer et al., 2006) and con-
sumption of this non-renewable resource could lead to a
peak P scenario (akin to peak oil; Raven, 2008; Cordell
etal.,, 2009). It is, therefore, likely that there will be increas-
ing pressures on Pi fertilizer availability and, consequently,
cost in the future. These pressures will be exacerbated by
increasing demand on food production systems as the
human population increases and by fluctuation in oil prices
(Cordell et al., 2009). Inappropriate use of inorganic Pi fer-
tilizers can also perturb the nutrient balance of natural
ecosystems and reduce biodiversity (White and Ham-
mond, 2008; 2009). Hence, it is desirable to increase the
efficiency by which plants can access the many forms of
unavailable P that reside within soil, thus, reducing the
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requirements for Pi fertilizer application (Richardson et al.,
2009; Stutter et al., 2012).

Plant-growth promoting rhizobacteria (PGPR) are bacte-
ria that can enhance crop yields through a variety of
mechanisms, including P mobilization, and their identifica-
tion has led to the notion that bacteria are an integral part
of the plant-root interface (rhizosphere) (Lugtenberg and
Kamilova, 2009; Miller et al., 2010). One advantage of uti-
lizing P-liberating bacteria in agricultural systems is that
they can have synergistic beneficial effects, for example,
pathogen suppression (Vassilev et al., 2006). The majority
of research into P mobilization by PGPR has focused on
the solubilization of inorganic P through acidification of the
surrounding soil via the release of organic acids, namely
gluconic acid (Rodriguez and Fraga, 1999; Miller et al.,
2010; Oteino et al.,, 2015). The genus Pseudomonas rep-
resents one soil bacterial group that is frequently
associated with plant-growth promotion, including P solubi-
lization (Miller et al., 2010). Various Pseudomonas strains
can also degrade organic P compounds, such as phytate,
phosphonates and phosphites (Ternan and Quinn, 1998;
White and Metcalf, 2004; 2007). Three Pseudomonas
strains, Pseudomonas putida BIRD-1, Pseudomonas fluo-
rescens SBW25 and Pseudomonas stutzeri DSM4166
(hereafter, BIRD-1, SBW25 and DSM4166 respectively)
are three examples of PGPR (Naseby et al., 2001; Hass
and Keel, 2003; Preston, 2004; Yu et al., 2011; Roca et al.,
2013). SBW25 inhabits the rhizosphere of Pea plants and
is antagonistic towards the pathogen Pythium ultimum
(Naseby et al, 2001), whereas DSM4166, an ‘unusual’
nitrogen-fixing bacterium, was isolated from a cultivar of
Sorghum nutans (Yu et al., 2011). BIRD-1, a P-solubilising
bacterium, has been previously utilized as a bioinoculant,
since it can significantly improve the germination rates,
growth and yields of various agricultural crops (Roca et al.,
2013). BIRD-1 can remineralize Pi from the plant P-
storage compound phytate, a major source of organic P in
some soils (up to 50%) (Stutter et al., 2012). Furthermore,
when BIRD-1 was used as an inoculant, phosphatase
activity was greater in the rhizosphere compared with bulk
soil (Roca et al, 2013). Although Pseudomonas have
been implicated in plant-growth promotion, partially attrib-
uted to their effect on P mobilization, the precise
mechanisms behind this process remain largely unknown.

The majority of Bacteria studied can undergo a physio-
logical response to Pi depletion controlled by a two-
component regulatory system (PhoBR) encoded by phoBR.
PhoBR regulates a large set of genes (the PHO regulon) in
response to low P concentrations (Baek and Lee, 2006;
Monds et al., 2006; Su et al., 2007). The majority of studies
have focused on specific functions/mechanisms that are
regulated by PhoBR, for example, the Pi specific transport
(Pst) system, motility and swarming, and expression of
alkaline phosphatases (APases), acid phosphatases or

secondary metabolites (Rittmann et al., 2005; Monds et al.,
2006; Sola-Landa et al., 2008; Furtwangler et al., 2010;
Zavaleta-Pastor et al., 2010). Fewer studies have experi-
mentally confirmed the global PHO regulon using recently
developed ‘omics’ techniques. Microarrays were employed
to identify genes regulated at the transcriptional level in
Pseudomonas aeruginosa (Bains et al., 2012), E. coli
(Baek and Lee, 2006) and Synechococcus sp. WH8102
(Tetu et al., 2009; Ostrowski et al., 2010) while traditional
2D-gel electrophoresis was performed to make a qualitative
assessment of the Bacillus subtilis proteome in response to
low Pi (Antelmann et al., 2000). These studies identified a
number of genes/proteins involved in Pi scavenging under-
lining the importance of performing ‘omics’ to study Pi
acquisition. In Pseudomonas, it has been shown that phos-
phate binding proteins (PBPs), APases, and virulence
factors are associated with phosphate-stress and regulated
by PhoBR (Monds et al., 2006; Bains et al., 2012; Putker
et al., 2013: Santos-Beneit, 2015).

Exoproteomics captures the extracellular protein fraction
that results from active secretion, cell lysis or leakage during
cell division (Armengaud et al., 2012; Ebner et al., 2016).
Removing the cellular fraction prior to protein extraction can
help to identify exoproteins that are involved in the interac-
tion of microorganisms with their environment (Christie-
Oleza et al, 2012; 2015). The majority of exoproteins
detected are associated with nutrient acquisition, motility,
cell attachment, defence, communication as well as antago-
nism (Christie-Oleza et al., 2012). Therefore, exoproteomics
is the ideal method of choice to study the bacterial mecha-
nisms for scavenging extracellular P. Due to the complexity
and technical challenges associated with metaproteomics
(Muth et al, 2015), this study aimed to identify Pi-
responsive proteins that can be used as markers for future
studies investigating Pi mobilization within the rhizosphere.
Therefore, exoproteomic analyses were performed on three
plant-associated Pseudomonas strains grown under Pi-
deplete conditions (50 uM). We hypothesized that Pseudo-
monas strains harbour a number of common Pi-scavenging
enzymes that would be expressed during Pi depletion. In
reality, clear evidence for intra-genus-level heterogeneity in
their exoproteomes was observed and a number of novel
PHO-regulon members specifically linked with the PHO reg-
ulon in Pseudomonas putida BIRD-1 were also determined.

Results

Effects of P-limitation on the growth of Pseudomonas
strains

We investigated the effect of Pi stress on three strains,
DSM4166, SBW25) and BIRD-1 by comparing growth
under Pi-replete (1.4 mM) or Pi-deplete (50 1M) conditions
(n=3). Both the growth rates and growth yields of all three
Pseudomonas strains showed a significant decrease

© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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(t-test score, P< 0.01) under Pi-deplete growth conditions
(Fig. 1A—C). As expected, Pi-deplete cultures of all three
strains demonstrated a significant increase in the level of
APase activity (Fig. 1D) due to the induction of the PHO
regulon (Monds et al., 2006; Putker et al., 2013).

General characteristics of the exoproteomes of the three
Pseudomonas species

Based on qualitative 1D SDS-PAGE analysis, there was
visible evidence for heterogeneity in the profiles of Pseudo-
monas exoproteomes in response to Pi-depletion (Fig. 2).
Samples were subsequently processed for peptide identifi-
cation using LC-MS/MS. Proteins were considered present
based on a minimum of at least two unique peptides. Exo-
proteins were identified by the presence of a signal peptide
sequence (IMG/JGI). Proteins detected in the exoproteome
that did not possess a signal peptide sequence were further
analysed using SecretomeP and LipaseP to determine if
they are secreted in a non-classical manner (Christie-Oleza
and Armengaud, 2010; Christie-Oleza et al., 2015). In Pi-
deplete cultures, ‘predicted’ exoproteins comprised 89.9%,
68.3% or 97.6% of the top-60 most abundant proteins
detected in the exoproteomes of BIRD-1, SBW25 and
DSM4166 respectively (Supporting Information Fig. S1),
while the remaining fraction was comprised of cytoplasmic
proteins. In BIRD-1, SBW25 and DSM4166 29, 52 and 54
proteins were significantly enriched (t-test, P value <0.05,
fold-change (log2) >1.5) in response to Pi-depletion
respectively (Supporting Information Tables S1-S3). In all
three Pseudomonas exoproteomes a suite of previously
characterized PHO-dependent proteins (Santos-Beneit,
2015) were enriched in their exoproteomes during growth
under Pi depletion. These included the high affinity peri-
plasmic substrate binding protein (SBP) subunits of the
high affinity Pi transporter (PstS) and phosphonate trans-
porter (PhnD), APases (PhoX, PhoD), 5-nucleotidase
(UshA) and glycerolphosphodiesterase (GlpQ) (Figs. 3 and
4 and Supporting Information Fig. S2). However, the
genomic content (Table 1) and thus exoproteomic response
to Pi depletion varied between the three Pseudomonas
strains (Fig. 3), revealing significant inter-genus level heter-
ogeneity. We should point out though that the exoproteome
of DSM4166 was harvested after a longer period
(DSM4166, 25 h; BIRD-1 & SBW25, 7-11 h respectively)
of Pi stress (Fig. 1) and as a result a higher percentage of
its exoproteome was associated with Pi-scavenging com-
pared with either BIRD-1 or SBW25 (Fig. 4).

Pseudomonads show heterogeneity in their resource
allocation towards organic P scavenging

Bacteria possess a number of different APases (PhoA,
PhoD, PhoX) with different phosphomonoesterase and

phosphodiesterase activities (Brickman and Beckwith,
1975; Scott and Wu, 2005). Again, there is genomic and
thus exoproteomic variation between the three Pseudo-
monas strains with respect to the catabolism of organic
P (Fig. 3 and Table 1). For example, BIRD-1 possesses
PhoX but lacks PhoD whereas DSM4166 and SBW25
possess both exoenzymes. Furthermore, PhoD was the
second most abundant protein in DSM4166 while it was
ranked 355th in the exoproteome of SBW25. In addition,
DSM4166 also harbours a distinctive PhoX homolog
that is duly expressed under Pi depletion (Fig. 4).
DSM4166 also expressed homologs of GlpQ (Larson
et al., 1983) and UshA (Zalkin and Nygaard, 1996; Ritt-
mann et al., 2005; Pinchuk et al., 2008) while BIRD-1
and SBW25 do not possess either of these exoen-
zymes. BIRD-1 did possess a gene encoding a
predicted exoprotein containing the same domains as
UshA (Pfam00149 - metallophos; Pfam02872 -
5_nucleotid_C), but did not secrete this protein in
response to low Pi.

Pseudomonads harbour a number of phosphate binding
proteins (PBPs) that are enriched in their exoproteome
in response to Pi-depletion

In total, the three Pseudomonas strains increased the
secretion of four different Pi binding proteins (PBP) con-
taining the Pfam01249 domain, in response to Pi-depletion
(Figs. 3 and 4). All PBPs found in the genomes of the three
Pseudomonas strains contain the key residues associated
with Pi binding (Supporting Information Fig. S3) (Berna
et al., 2008; Liebschner et al., 2009). DSM4166 has a sin-
gle operon encoding Pst (pstSCAB), whereas BIRD-1 and
SBW?25 have two operons encoding two separate Pst sys-
tems (Fig. 5A). All PstS homologs were secreted in large
quantities during Pi depletion (Fig. 4). The two operons
were named pst1 and pst2. PstS1 is closely related to
PstS found in E. coli (Wanner, 1990) and Synechocystis
sp. PCC6803 (herein, Synechocystis) (Pitt et al., 2010),
whereas PstS2 is phylogenetically distinct and closely
related to Vibrio PstS (Pratt et al., 2010) (Fig. 5B). Interest-
ingly, pstSCAB1 is not present in all Pseudomonads
whereas pstSCABZ2 is (Table 1).

In SBW25, another PBP (encoded by PFLU2427), here-
after referred to as Psp, was heavily secreted in Pi-deplete
cultures (Fig. 4) alongside a large hypothetical exoprotein
(encoded by PFLU2428) that contains a domain related to
an adhesion virulence factor (Inatsuka et al, 2005). All
Pseudomonas screened encode Psp3. However, only
DSM4166 appeared to secrete this exoprotein
(PSTAA_2217) in response to Pi stress. Psp3 contains an
outer membrane protein A (OmpA) domain implying that
this protein may be located in the outer membrane.

© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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To date, PhnD, which is located in an operon with genes
encoding the promiscuous C-P lyase (PhnF-M), is the only
characterized phosphonate transporter (Baker et al., 1998).
A number of putative SBPs responsible for phosphonate
transport were identified in the Pseudomonas strains
genomes (Fig. 6A) and detected in their exoproteomes, with
almost all showing a positive response to Pi-depletion
(Supporting Information Fig. S4). Phylogenetic analysis cate-
gorized these homologs into five groups, hereafter referred to
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as PhnD, PhnD2, PhnD3, PhnD4 and PhnD5. However, none
of the three Pseudomonas strains possesses all five homo-
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logs in their genomes (Fig. 6B and Table 1). PhnD and PhnD2
both contain the Pfam012974 domain (phosphonate-binding
domain) and these two homologs are mutually exclusive with
one another among the genomes of Pseudomonas strains.
Only SBW25 possesses and secreted PhnD, a known PHO-
regulon member (Baker et al., 1998), during Pi-depletion (Fig.
6). BIRD-1 and DSM4166 both possess PhnD2, which
showed a modest increase in abundance in both strains
under Pi depletion (Supporting Information Fig. S4). The
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Fig. 2. A qualitative assessment, using 1D-SDS PAGE, of the exoproteomes of all three Pseudomonas strains examined prior to HPLC 2D-
MS/MS. Each gel lane represents 20 ml culture supernatant. For both Pi deplete and Pi replete growth conditions, three biological replicates
were performed.
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Fig. 5. Genomic analyses of the Pi binding proteins found in the three Pseudomonas strains (A) The genetic neighbourhood profiles of the
different Pi binding proteins located in the three Pseudomonas strains (B) The diversity of proteins that contain the Pfam12849 domain using a
number of genome-sequenced soil bacteria with the inclusion of characterized Pi binding proteins. Abbreviations; pstSCAB1/2, Pi-specific ABC
transporter; psp, DING-family Pi binding protein; psp2/3, uncharacterized Pi binding protein; nptA, NA™/Pi co-transporter; glpD, glycerol 3-
phosphate dehydrogenase; glpR, transcriptional regulator; glycerol kinase; glpK, glycerol uptake facilitator; fhaB-like, putative filamentous
haemagglutinin; phoBR, two component regulator; gsp, type |l secretion system.

abundance of PhnD3 also increased in Pi-deplete SBW25
and BIRD-1 exoproteomes. PhnD4 is closely related to a
SBP (SM_b21540) located upstream of genes (phnWAY)
encoding an alternative pathway for the degradation of 2-
AEP in Sinorhizobium meliloti (Fig. 6A) (Borisova et al., 2011)
and was only detected in Pi-deplete BIRD-1 cultures, albeit at
alow abundance.

Organic acid production

The Pi solubilization potential of the three Pseudo-

genomic and exoproteomic level. Only DSM4166
induced secretion of two extracellular proteins anno-
tated as pyroloquinoline quinone (PQQ)-dependent
alcohol dehydrogenases (QedH, PSTAA_2299; PedH,
PSTAA_2293) in response to Pi stress (Fig. 3). Although
BIRD-1 does possess homologs of both of these pro-
teins neither were detected in its exoproteome. All three
strains expressed and secreted an exoprotein under Pi-
depletion that contained the Pfam07995 domain (glu-
cose/sorbosone dehydrogenase) and this enzyme may
represent a novel mechanism for extracellular organic
acid production.
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Fig. 6. Genomic and proteomic analyses of the phosphonate binding proteins found in the three Pseudomonas strains (A) The genetic
neighbourhood profiles of the different phosphonate binding proteins located in the three Pseudomonas strains (BIRD-1, SBW25, DSM4166)
as well as Sinorhizobium meliloti 1021 (1021). (B) Neighbour-joining phylogenetic analysis of the different phosphonate binding proteins
detected in the Pseudomonas strains outlined in Table 1 with the addition of various Burkholderia and Flavobacteria strains. Bootstrap values
(500 runs) have been omitted for clarity. IMG accession numbers have been included as a reference. Abbreviations: phnWAY, alternative 2-
aminoethylphosphonate degradation pathway; phnDCE1/2/3/4, phosphonate ABC transporter; phnF-M, C-P lyase.
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Identification of novel Pi-responsive exoproteins in
Pseudomonas strains

In response to Pi-depletion BIRD-1 and SBW25 expressed
a hypothetical outer membrane protein (PPUBIRD1_1354,
PFLU4536) containing the Pfam16930 domain which is
linked to porin structure (Figs. 3 and 4). In BIRD-1 this was
one of the most abundant proteins in the exoproteome of
P-stressed cells (Fig. 3). P-stressed SBW25 cells secreted
an uncharacterized lipoprotein containing a ParB-like
nuclease domain (Pfam08857), which may have a similar
function to UshA (Rittmann et al., 2005) (Fig. 3). BIRD-1
also secreted a putative extracellular phosphotriesterase/
amidohydrolase (AmdDHS3 Il, PPUBIRD1_5046) that has
the potential to cleave the C-O-P bond of certain pesticides
(Sun et al., 2004). In DSM4166, three hypothetical exopro-
teins containing the domain of unknown function (DUF)
1329 increased in abundance in response to low Pi. How-
ever, these proteins did not increase in abundance in the
exoproteomes of either of the other two Pseudomonas iso-
lates. Finally, a number of putative extracellular proteases
were enriched in the exoproteome of SBW25 in response
to Pi depletion (Supporting Information Table S2).

Analysis of the Pi-responsive whole-cell proteome in
BIRD-1

To gain a deeper understanding of the Pi-responsive pro-
teome, the whole-cell proteome of BIRD-1, which included
both cytosolic and membrane protein fractions, was ana-
lysed. The majority of abundant proteins detected in the
proteome of BIRD-1 were housekeeping and central
metabolism proteins (e.g. GyrB, DnaK, GroEL, RpoD,
RpoB, FusA, lleS, GuaA, Tuf, SdhA, SdhB, AtpA, AtpB,
RpsA, RpsC, SucC, SucA) whose abundance was not sig-
nificantly affected by differing Pi regime (Supporting
Information Table S4). A total of 267 proteins were signifi-
cantly enriched [ttest, P value<0.05, fold-change
(log2) > 1.5] during Pi depletion and there was concord-
ance between the two datasets. These enriched proteins
included the transmembrane and ATP-binding domains
of the Pst system (PstC, PstA, PstB), a 2-
aminoethylphosphonate (2-AEP)-—specific phosphonatase
(PhnX, PhnW) (Jiang et al., 1995; Baker et al., 1998; White
and Metcalf, 2007), proteins involved in lipid remodelling
(PIcP, DagK, OlsA, OlsB, Cfa, TauD) (Liu and Hulett, 1998;
Antelmann et al., 2000; Zavaleta-Pastor et al., 2010; Carini
et al., 2015; Sebastian et al., 2016), a putative intracellular
phosphatase (UxpA) and the twin-arginine translocation
(TAT) pathway (Putker et al., 2013) (Table 2). Proteins for
both starch (MalQ, GIgE, GlgX, GlpA and GlpB) and poly-
hydroxyalkanoic acid (PhaA, PhaG, PhaC) biosynthesis
(carbon storage) were also enriched during Pi stress (Sup-
porting Information Table S4). The abundance of a

cytoplasmic glucose-6-phosphate dehydrogenase (Zwf),
as well as two distinct membrane-bound (PPU-
BIRD1_4115, PPYBiIRD1_2225) glucose dehydrogenases
(Ged, Gedll respectively), all of which are known to play a
role in Pi solubilization through gluconic acid production
(Miller et al., 2010; Roca et al., 2013), was also greater in
Pi-deplete cells. Finally, another HAD-family phosphatase
(encoded by PPUBIRD1_3492), similar to PhnX was only
detected in the proteome of Pi-deplete cells (Table 2).

Identification of PHO-regulated Pi-responsive proteins in
BIRD-1

To assess how the Pi-responsive proteome and exopro-
teome in BIRD-1 is regulated we disrupted the genes
encoding the master regulator of the PHO regulon, phoBR.
Compared with the wild type, the phoBR mutant showed a
substantial reduction in final growth yield when grown
under Pi deplete, but not Pi replete conditions (Supporting
Information Fig. S5). As with the wild type strain, we per-
formed exoproteome and whole-cell proteome analysis for
the phoBR strain. In the phoBR mutant, three categories of
Pi responsive proteins were determined: (1) proteins that
were absent (below detection level) in the mutant and
observed in the wild type (2) proteins that no longer
increased in abundance under Pi stress and (3) proteins
whose abundance in both Pi-replete and Pi-deplete growth
conditions was similar to the wild type. In the whole-cell
proteome, PstSCAB1&2, PhoX, UxpA, PhoBR, PhoU,
TatADG, PhnXW, PIcP, OlsAB, TuaD were all absent dur-
ing Pi-deplete growth of the mutant (Table 2). With respect
to Pi solubilization, Gedll was also absent, whereas Gcd
was not enriched in Pi-deplete cells, unlike the wild type.
However, the abundance of Zwf was unaffected by muta-
tion of phoBR. The putative HAD-like phosphatase
(PPUBIRD-1_3492), as well as the hypothetical outer
membrane protein PPBUBIRD1_1354, were also absent in
the mutant, suggesting that these two proteins are novel
members of the pho regulon (Table 2). Interestingly,
AmdHd3Il was still enriched during Pi-stress suggesting
that it is not regulated by phoBR. The abundance of sev-
eral other proteins was also not affected by mutation of
phoBR (Table 2 and Supporting Information Table S5) indi-
cating that a PHO-independent response to Pi stress
occurs in BIRD-1. For example, all the carbon storage pro-
teins and proteins linked with biofilm formation (encoded
by PPUBIRD1_2591-2608) stil showed a PHO-
independent response to Pi stress.

In the exoproteome of the BIRD-1 phoBR mutant,
PstS1, PhoX, the hypothetical exoprotein/porin (PPU-
BIRD1_1354), PhnD4 were all absent from either growth
condition. Meanwhile, the abundance of PstS2 PhnD2,
PhnD3, GSDH, AmdHd3, AmdHdIl and the hypothetical
exoprotein (PPUBIRD1_3958) were all reduced in Pi
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Table 2. P-responsive proteins in BIRD-1 that are under the control of the PHO regulator, PhoBR.

Accession Fold Fold

Identified proteins number Locus tag change — WT*  change — mutant”

Proteins silenced in the phoBR mutant
Hypothetical protein, conserved ADR57845 PPUBIRD1_0136 412 ND
Taurine dioxygenase tauD ADR57960 PPUBIRD1_0256 2.31 ND
Phosphate-specific methyl-accepting chemotaxis ctpL ADR58302 PPUBIRD1_0612  4.95 ND
protein
Dehydratase ADR58320 PPUBIRD1_0630 2.32 ND
HlyD family type | secretion membrane fusion ADR58534 PPUBIRD1_0849  3.42 ND
protein
ABC transporter related protein ADR58535 PPUBIRD1_0850 4.34 ND
lyso-ornithine lipid acyltransferase olsA ADR58658 PPUBIRD1_0974 2.18 ND
ornithine-acyl[acy! carrier protein] N-acyltransferase  olsB ADR58659  PPUBIRD1_0975  4.14 ND
L-serine dehydratase ADR58719 PPUBIRD1_1037 2.05 ND
Arginine/ornithine antiporter arcD ADR58734 PPUBIRD1_1052  3.04 ND
General secretion pathway protein K tatA ADR58773 PPUBIRD1_1091 3.34 ND
Alkaline phosphatase phoX ADR58775 PPUBIRD1_1093 5.14 ND
2’,3’-cyclic-nucleotide 2’-phosphodiesterase UxpA ADR58776 PPUBIRD1_1094  3.24 ND
General secretion pathway protein G tatG ADR58781 PPUBIRD1_1099  4.60 ND
Hypothetical protein, conserved ADR59032 PPUBIRD1_1354  5.10 ND
Metallophosphoesterase plcP ADR59065 PPUBIRD1_1390 4.59 ND
Gluconate 2-dehydrogenase acceptor subunit ADR59804 PPUBIRD1_2165  3.15 ND
2Fe-2S iron-sulfur cluster binding domain ADR59806 PPUBIRD1_2167 4.47 ND
Probable quinate dehydrogenase gedll ADR59861 PPUBIRD1_2225  3.26 ND
UDP-glucose 4-epimerase ADR60229  PPUBIRD1_2604 2.14 ND
Response regulator ADR60354 PPUBIRD1_2733 3.33 ND
UDP-glucose 6-dehydrogenase tuaD ADR60422 PPUBIRD1_2809 5.63 ND
Putative cyclopropane fatty acid synthase A cfa2 ADR60552 PPUBIRD1_2940 2.93 ND
Hypothetical protein, conserved ADR60627 PPUBIRD1_3016  4.96 ND
Phosphate ABC transporter, ATP-binding domain pstB1 ADR60628 PPUBIRD1_3017  6.70 ND
Phosphate ABC transporter, transmembrane pstA1 ADR60629 PPUBIRD1_3018  4.52 ND
domain
Phosphate ABC transporter transmembrane pstC1 ADR60630 PPUBIRD1_3019  3.91 ND
domain
Phosphate ABC transporter, periplasmic binding pstS1 ADR60631 PPUBIRD1_3020 5.08 ND
domain
2-aminoethylphosphonate—pyruvate transaminase phnW ADR61037 PPUBIRD1_3442  3.87 ND
Phosphonoacetaldehyde hydrolase phnX ADR61038 PPUBIRD1_3443 4.76 ND
Hypothetical protein, conserved (HAD-like domain) ADR61085 PPUBIRD1_3492  3.081 ND
Cation/acetate symporter actP actP ADR61460 PPUBIRD1_3874 2.74 ND
GntR family transcriptional regulator ADR61476 PPUBIRD1_3890 3.57 ND
ABC transporter ATP-binding protein ADR61481 PPUBIRD1_3895 4.72 ND
Metallopeptidase, zinc binding protein ADR61927 PPUBIRD1_4353 2.26 ND
Fe3+ ABC transporter, periplasmic binding domain ADR62476 PPUBIRD1_4925 2.04 ND
Fe3+ ABC transporter, ATP-binding domain ADR62478 PPUBIRD1_4927 2.85 ND
Arylesterase, putative ADR62594  PPUBIRD1_5047  3.47 ND
Winged helix family regulator phoB ADR62659 PPUBIRD1_5112  4.38 ND
Phosphate regulon sensor protein phoR ADR62660 PPUBIRD1_5113  4.64 ND
Phosphate ABC transporter, ATP-binding domain pstB2 ADR62665 PPUBIRD1_5118  5.16 ND
Phosphate ABC transporter, transmembrane pstA2 ADR62666 PPUBIRD1_5119  4.93 ND
domain
Phosphate ABC transporter, transmembrane pstC2 ADR62667 PPUBIRD1_5120 6.46 ND
domain
Phosphate ABC transporter, periplasmic binding pstS2 ADR62668 PPUBIRD1_5121 3.55 ND
domain

Proteins that were down-regulated compared with the
WT
Taurine ABC transport, periplasmic binding domain tauA ADR57963 PPUBIRD1_0259 3.10 -1.14
Quinoprotein glucose dehydrogenase A ged ADR61697  PPUBIRD1_4115  2.03 0.86
Methyl-accepting chemotaxis sensory transducer ADR61928  PPUBIRD1_4354  1.99 —0.38
Phosphate transport regulator phoU ADR62664 PPUBIRD1_5117 2.07 -0.32

© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Table 2. cont.
Accession Fold
Identified proteins number Locus tag change — WT*  change — mutant®
Proteins whose expression was not affected by
PhoBR
Cyclopropane-fatty-acyl-phospholipid synthase cfatl ADR57745  PPUBIRD1_0035 2.71 4.55
Phosphonate ABC transporter, periplasmic binding phnD2 ADR58557 PPUBIRD1_0873  0.62 1.16
domain
ABC-type Fe3+ transport system periplasmic bind- phnD3 ADR61477 PPUBIRD1_3891 2.69 2.31
ing domain
Exopolyphosphatase ppX ADR62560 PPUBIRD1_5012  0.44 0.66
Polyphosphate kinase ppK ADR62561 PPUBIRD1_5013 1.34 0.89
Amidohydrolase 3 amdhd3ll  ADR62593 PPUBIRD1_5046  4.45 3.97
PhoH family protein phoH ADR61846  PPUBIRD1_4270 1.38 2.78

ND, not detected; WT, wild type.

A number of P-responsive proteins of interest that are not regulated by PhoBR are also listed. The abundance of these proteins within the Pro-
teome of BIRD-1 is shown in Table S4. The accession number shown refers to the Uniprot database. * represents Log2 transformation of fold
change values that are the mean of triplicate cultures. All proteins displayed in the Table with a Log2 value > 1.5, were also statistically signifi-

cantly enriched under Pi depletion (t-test, P value <0.05).

deplete cultures compared with the wild type, but were still
detected (Figs. 3 and 4).

Discussion

Characterizing the exoproteomes, and thus the functional
entities associated with environmental interactions
(Armengaud et al., 2012), of various Pseudomonas strains
allowed us to deepen our understanding of Pi-regulated
protein expression in this genus (Figs. 3 and 4). While,
genomic comparisons, based on known proteins in the
literature, allowed us to access the heterogeneity in their
P-mobilizing and P-scavenging ‘potential’, proteomic anal-
yses revealed both differences in their global regulatory
networks and also helped to identify novel Pi-responsive
proteins, which may be of further biotechnological interest.
For example, a novel Pi-responsive extracellular nuclease
in SBW25 was discovered that was not identified through
our comparative genomic analysis. Importantly, the genes
(PPUBIRD1_5077, PPUBIRD1_0727, PPUBIRD1_2395,
PPUBIRD1_0951, PPUBIRD1_0932) identified in BIRD-1,
based solely on in silico annotation (Roca et al., 2013),
were not members of the PHO regulon, highlighting the
need for auxiliary studies to confirm genomic annotation.
Furthermore, the strong secretion of exoproteins, such as
PstS and PhoX, may serve as markers for characterizing
complex communities in soil/rhizosphere to enable identifi-
cation of the key microbial taxa involved in P recycling.

Soil organic P exists in many forms and frequently
accounts for 30%—65% of total P in soils (Harrison, 1987)
and its mineralization to Pi can have a great impact on total
P bioavailability (Turner et al., 2002; Shen et al., 2011).
From the genomic comparison of each strain, it appears
that DSM4166 has the greatest ability to degrade organic
P compounds as it contains two distinct PhoX homologs

as well as PhoD, UshA and GlpQ (Larson et al., 1983; Ante-
Imann et al.,, 2000; Rittmann et al., 2005; Monds et al.,
2006; Pinchuk et al., 2008; Putker et al., 2013). We also
identified an UshA-like homolog and a GlpQ-like homolog
(PFLU4789) in the genomes of BIRD-1 and SBW25,
respectively, but in contrast to DSM4166, neither or these
homologs were secreted in response to Pi depletion.
SBW25 also heavily secreted Psp, a phosphate-binding
protein (Scott and Wu, 2005), which is closely related to the
low molecular weight phosphatases, LapA and LapB, in P,
aeruginosa (Tan and Worobec, 1993; Ball et al., 2002). Psp
may, therefore, be the exoenzyme responsible for the
unnaccounted APase activity detected in P fluorescens
PfO-1 (Monds et al., 2006). Interestingly, it was SBW25 that
elicited the strongest APase activity towards pNPP (phos-
phomonoesterase activity). To date, little is known about the
natural substrate range of these promiscuous enzymes in
soil and it is likely that differences occur between the differ-
ent PhoX homologs. In support of this hypothesis, SBW25
PhoX is phylogenetically distinct (Supporting Information
Fig. S6) from either BIRD-1 or DSM4166 homologs.
Although P solubilization through organic acid produc-
tion has been well studied in Pseudomonas (Rodriguez
and Fraga, 1999; Miller et al., 2010) several putatively new
P solubilizing proteins likely involved in this process were
still identified at the genomic level, e.g. QedH, PedH, and
an alternative PHO-regulated Gcd, Gedll (Fig. 2; Table 2).
However, a similar discordance between genomic predic-
tion and proteomic abundance was observed for Pi-
solubilizing enzymes. For example, QedH and PedH were
detected in Pi-depleted DSM4166 cultures, but not in
BIRD-1. GSDH, another previously uncharacterized pro-
tein with respect to the PHO regulon, and not identified in
our genomic assessment, was secreted in all three strains

© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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in response to Pi-depletion and likely has a role in Pi-
solubilization though organic acid release. The lower abun-
dance of Pi-solubilizing proteins may have resulted from
an absence of glucose in the growth medium the precursor
substrate for these Pi-solubilizing enzymes.

Although the three Pseudomonas strains can grow on
phytate as a source of P (Lim et al, 2007; Roca et al.,
2013), there was no evidence that either the known phy-
tase of DSM4166 and SBW25, or the predicted phytase,
responsible for the growth of BIRD-1 on this substrate
(Roca et al.,, 2013) are regulated by PhoBR. Considering
that phytate is usually ubiquitous in soils (Stutter et al.,
2012), Pseudomonads have likely adapted to express their
respective phytases solely in response to the presence of
this compound and may explain why these Pi-mobilizing
enzymes are unexpectedly not part of the Pseudomonas
PHO regulon.

The existence of two distinct Pst systems in both BIRD-
1 and SBW25 is similar to that of Synechocystis, Vibrio
cholerae and the Archaeon, Halobacterium salinarium R1
(Furtwangler et al., 2010; Pitt et al, 2010; Mudrak and
Tamayo, 2012). As Pst2 is present in all Pseudomonas
strains, while Pst1 appears in only a few, we hypotheize
that Pst2 is essential for efficient uptake of Pi in Pseudo-
monas. However, Pst1 must clearly have a role in Pi
uptake as we detected PstS1 as well as PstS2 in both
BIRD-1 and SBW25 exoproteomes. Furthermore, although
disruption of PstS1 in SBW25 did not affect growth on low
Pi in isolation, it did confer a fitness reduction in the pres-
ence of the wild type (Zhang et al, 2007). In
Synechocystis, Vibrio and H. salinarium, Pst1 and Pst2
either have different kinetic parameters for the uptake of Pi
(Furtwangler et al, 2010; Pitt et al, 2010) or are
expressed during different growth phases (planktonic v bio-
film) (Pratt et al., 2010; Mudrak and Tamayo, 2012). The
data presented in this study favours the hypothesis that
they have different kinetic parameters as both were
expressed in BIRD-1 and SBW25 during planktonic
growth.

Only BIRD-1 and SBW25 have the genetic potential to
catabolize phosphonates (Table 1), and in BIRD-1, phos-
phonatase (PhnWX) was PHO-regulated. Based on our
data, we cannot rule out the possibility that DSM4166 can
also grow on phosphonates as a source of P for two rea-
sons: (i) Although phosphonate degradation has been
well documented in recent years (Jiang et al., 1995; White
and Metcalf, 2007; Villarreal-Chiu et al., 2012; McGrath
et al., 2013), bacteria capable of growing on phospho-
nates that do not possess any of the characterized genes/
proteins have been isolated, demonstrating alternative
pathways for phosphonate degradation must exist in
nature (Fox and Mendz, 2006); (i) DSM4166 possesses
and expressed a number of putative phosphonate trans-
porters (Table 1 and Fig. 6). Characterizing these putative

transporters will surely enhance our knowledge regarding
phosphonate degradation in Pseudomonas strains and
may provide new molecular markers for investigating the
in situ cycling of these compounds (Mauchline et al.,
2006; Christie-Oleza and Armengaud, 2010; Lidbury
etal., 2014).

Bacteria that can remodel their lipid membranes in order
to reduce their ratio of P-containing:non P-containing lipids
(Zavaleta-Pastor et al., 2010; Carini et al., 2015; Sebastian
et al.,, 2016) are desirable to use as PGPR as their require-
ment for P is reduced. We found genes encoding for the
key proteins required for lipid remodelling (PlcP, DagK,
OIsA and OIsB) in the genomes of all Pseudomonas
strains scrutinised (Gao et al., 2004; Zavaleta-Pastor et al.,
2010). Furthermore, in BIRD-1 these proteins were
expressed in a PHO-dependent manner. Interestingly, in
BIRD-1 UDP-glucose 6-phosphate dehydrogenase (TuaD)
was also PHO-regulated. In B. subtilis, TuaD is encoded
by the tua operon that is involved in the production of tei-
churonic acid lipids during Pi-depletion (Liu and Hulett,
1998; Antelmann et al, 2000). The rest of the genes
required for teichuronic acid were absent, therefore, mak-
ing the role of TuaD somewhat unclear in BIRD-1. As all of
these proteins were silenced in the phoBR mutant, it is
likely that remodelling the lipid membrane accounts for the
gross difference observed in growth between this strain
and the wild type when grown under Pi-deplete conditions
(Fig. 7).

The observed heterogeneity in the Pi responsive portion
of the proteome of the three Pseudomonas strains in this
study highlights how the utilization of different PGPR can
have potentially different effects in the rhizosphere. For
example, based on our genomic and proteomics data, dif-
ferences in the ability of the strains to degrade
phospholipids, nucleic acids and organopesticides (Singh
and Walker, 2006; Bigley and Raushel, 2013), as well as a
likely difference in their broad organic P substrate range
may have marked effects on their ability to mobilize P for a
plant host under certain environmental conditions. For
example, the addition of a strain comparable to DSM4166,
expressing UshA and GIpQ, may increase the acquisition
of P in plants when using manure as the nutrient source,
which is rich in nucleic acids and phospholipids (Turner
and Leytem, 2004; Shen et al, 2011). Furthermore,
DSM4166 is a known nitrogen fixer and in certain soils
(nitrogen-limited) employing this strain over that of either
BIRD-1 or SBW25 may provide more efficient plant-growth
promotion. Likewise, in soils contaminated with
phosphorus-containing organopesticides, it may be more
suitable to deploy a strain similar to SBW25, which con-
tains the promiscuous C-P lyase, capable of degrading
these compounds, or BIRD-1 which possesses a Pi-
responsive putative phosophotriesterase.

© 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Conclusions

Observing the global exoproteomic response of just three
Pseudomonas species revealed new insights into the P
scavenging capabilities of this genus and has provided a
number of markers (Muth et al., 2015) that can be utilized
to investigate P-mobilization directly in the rhizosphere.
Given the enormous task of identifying proteins in situ from
complex communities, the data presented in this paper will
serve as a platform to investigate the key enzymes and
microbial taxa involved in P-mobilization at the level of
functional entities (proteins) in situ. Meta-exoproteomics
has already identified differences between genomic and
proteomic assessments of soil chintase-degrading com-
munites (Johnson-Rollings et al., 2014) and should also
shed light on the ‘black box’ concerning P-mobilization in
the rhizosphere.

Experimental procedures
Growth and maintenance of bacterial strains

All three Pseudomonas strains were maintained on Luria Ber-
tani (LB) agar (1.5% w/v) medium at 30°C. To investigate the
effect of Pi-depletion on the three strains, each was grown
(n=3) in an adapted Minimal A medium comprising: Na-
Succinate 5.4 g 1", NaCl 200 mg 1", NH,CI 450 mg 1",
CaCl, 200 mg |~ ", KCL mg 1~ ' MgCl, 450 mg |, FeCl, 10 mg
I”", MnCl, 10 mg I, 10 mM 4-(2-hydroxyethyl)—1-piperazi-
neethanesulfonic acid (HEPES) pH 7.2, with KH,PO, added to
a final concentration of either 50 uM or 1.4 mM. Each strain
was pre-cultured in minimal A medium containing 400 uM Pi to
ensure cells had adequate Pi while minimizing the potential for
carry over of residual Pi into triplicate experimental cultures.

Quantification of alkaline phosphatase activity

A 0.5 ml culture (n= 3) was incubated with 20 pl para-nitro-
phenyl phosphate (pNPP) (final conc. 4mM) and incubated at
room temperature for 1 h or when colour development started
to occur. The reaction was stopped using 25 pl NaOH (2 mM)
and incubated for 10 min. Cell debris and precipitants were
removed via centrifugation (2 min, 8,000 X g) prior to spectro-
photometry (optical density 405 nm). A standard curve for
para-nitrophenol was generated using a range of known con-
centrations (0, 4, 8, 25, 50, 75, 100 mg ml™").

Preparation of exoproteomes, trypsin in-gel proteolysis,
nano-LC-MS/MS analysis and peptide identification
through MS/MS database searching

Exoproteomes were analysed using modified methods of
Christie-Oleza and Armengaud (2010). The recorded MS/MS
spectra were searched against the protein sequence database
(P putida BIRD-1, NC_017530.1; P. fluorescens SBW25,
NC_012660.1; P stutzeri DSM4166, NC_017532.1). Full
details of the protocol and parameters used for peptide identifi-
cation can be found in the supplementary materials and
methods.

Quantification of detected proteins

The Normalized Spectral Abundance Factor (NSAF) values
were calculated using SCAFFOLD v4.0 according to software
defaults. For the exoproteomes, no further normalization was
performed. For whole-cell proteomics, 25 pug of protein was
loaded onto SDS-PAGE gels prior to identification. No further
normalization was performed. However, we examined the
abundance of several housekeeping proteins and central
metabolic enzymes and did not observe substantial change in
their abundance. For determining the proportion of proteins
within the exoproteome, replicate cultures (n=3) were
averaged. The proteomics data has been deposited in the
Proteomics Identification (PRIDE) database (Martens et al.,
2005) with the following accession numbers: PXD004065,
PXD004064, PXD003830, PXD003829, PXD003828,
PXD003827, PXD003826.

Bioinformatics analysis of detected proteins and
comparative genomics

The majority of analyses were performed using the Integrated
Microbial Genomes Database at the Joint Genome Institute
(IMG/JGI) server (http://img.jgi.doe.gov/). Please refer to sup-
plementary information for a detailed summary of the
bioinformatics approaches used. IMG/JGI was also used for
comparative genomic analyses. BLASTP (expected value, e-
30, minimum identity = 20%) searches were performed using
the proteins detected in the exoproteomes/proteome. In some
cases other proteins identified from the literature known to be
involved in Pi scavenging/recycling were used as queries for
BLASTP analysis. For the Pi-binding proteins (PBP), a func-
tion search using the IMG/JGI database was performed using
the Pfam domain, 12849 as the query.

Genetic manipulation of P. putida BIRD-1

To construct a phoBR mutant of P, putida BIRD-1, the method
outlined by Lidbury et al. (2014) was adapted. Please refer to
the supplementary information for a detailed procedure.
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Fig. S1. Proportion of the extracellular and intracellular pro-
teins detected in the four protein fractions extracted during
this study. Only the top-60 most abundant proteins were
included in the analyses. The values displayed are taken
from Pi-deplete and Pi-replete cultures. Results presented
are the mean of triplicate cultures.

Fig. S2. The abundance of proteins in both the high Pi and
low Pi exoproteomes of the three Pseudomonas strains. (A)
Pseudomonas fluorescens SBW25, (B) Pseudomonas

putida BIRD-1, (C) Pseudomonas stutzeri DSM4166.
Results are the mean of triplicate cultures and error bars
denote standard deviation.

Fig. S3. Conservation of the key residues (highlighted in
red) involved in phosphate binding among the periplasmic
binding proteins containing the domain, Pfam12849- PBP.
Locus tags are used as the identifier. Abbreviations: VP,
Vibrio parahaemolyticus; VC/VCA, V. cholerae; VAA, V.
anguillarum; V. harveyi MYO, Synechocystis sp. PCC6803;
PFLU, P fluorescens; PA, P aeruginosa; PPUBIRD1, P
putida; PSTAA, P stutzeri; Psyr, P. syringae; EcDH1, E.
coli; P Antarctica; Smc; Ensifer meliloti.

Fig. S4. Semi-quantitative abundance analysis of the puta-
tive phosphonate substrate binding proteins detected in the
exoproteomes of the three Pseudomonas strains. and the
phoBR mutant. Results presented are the mean of triplicate
cultures. Error bars denote standard deviation.

Fig. S5 Growth of the phoBR mutant strain of P putida
BIRD-1.

A. A comparison of the phoBR mutant grown under Pi-
replete (Black circles) and Pi-deplete (Grey circles) condi-
tions. Concentrations of Pi were the same as those used
for the wild type. Black arrows indicated the times of sam-
pling for proteomics and exoproteomics. The striped arrow
indicates the addition of Pi (50 pM) to help generate
enough biomass for sampling.

B. Growth yields of either the wild type or phoBR mutant
sampled after 48 hours grown on Pi-replete or Pi-deplete
growth media. Results presented are the mean of triplicate
cultures. Error bars denote standard deviation.

Fig. S6. Evolutionary relationships of PhoX-like homologs.
The evolutionary history was inferred using the Neighbor-
Joining method [1]. The optimal tree with the sum of branch
length = 3.66263884 is shown. The tree is drawn to scale,
with branch lengths in the same units as those of the evolu-
tionary distances used to infer the phylogenetic tree. The
evolutionary distances were computed using the p-distance
method [2] and are in the units of the number of amino acid
differences per site. The analysis involved 27 amino acid
sequences. All ambiguous positions were removed for each
sequence pair. There were a total of 842 positions in the
final dataset. Evolutionary analyses were conducted in
MEGAG® [3].

Table S1. A rank-abundance profile of the identified pro-
teins in the exoproteome of Pseudomonas putida BIRD-1.
Table S2. A rank-abundance profile of the identified pro-
teins in the exoproteome of Pseudomonas fluorescens
SBW25.

Table S3. A rank-abundance profile of the identified pro-
teins in the exoproteome of Pseudomonas stutzeri
DSM4166.

Table S4. A rank-abundance profile of the identified pro-
teins in the proteome of P putida BIRD-1.

Table S5. A rank-abundance profile of the identified pro-
teins in the cellular proteome of the P putida BIRD-1
phoBR mutant.

Table S6. A rank-abundance profile of the identified proteins
in the exoproteome of the P, putida BIRD-1 phoBR mutant.
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