516 research outputs found

    Effect of contrast material injection protocol on first-pass myocardial perfusion assessed by dual-energy dual-layer computed tomography

    Get PDF
    Background: Dual-energy dual-layer computed tomography (CT) scanners can provide useful tools, such as iodine maps and virtual monochromatic images (VMI), for the evaluation of myocardial perfusion defects. Data about the influence of acquisition protocols and normal values are still lacking. Methods: Clinically indicated coronary CT-angiographies performed between January-October 2018 in a single university hospital with dual-energy dual-layer CT (DE-DLCT) and different injection protocols were retrospectively evaluated. The two protocols were: 35 mL in patients <80 kg and 0.5 mL/kg in patients >80 kg at 2.5 mL/sec (group A) or double contrast dose at 5 mL/sec (group B). Patients with coronary stenosis >50% were excluded. Regions of interest were manually drawn on 16 myocardial segments and iodine concentration was measured in mg/mL. Signal-to-noise, contrast-to-noise ratios (CNR) and image noise were measured on conventional images and VMI. Results: A total of 30 patients were included for each protocol. With iodine concentrations of 1.38 +/- 0.41 mg/mL for protocol A and 2.07 +/- 0.73 mg/mL for protocol B, the two groups were significantly different (P<0.001). No significant iodine concentration differences were found between the 16 segments (P=0.47 and P=0.09 for group A and B respectively), between basal, mid and apical segments for group A and B (P=0.28 and P=0.12 for group A and B respectively) and between wall regions for group A (P=0.06 on normalised data). In group B, iodine concentration was significantly different between three wall regions [highest values for the lateral wall, median =2.03 (1.06) mg/mL]. Post-hoc analysis showed highest contrast-to-noise and signal-to-noise in VMI at 40 eV (P<0.05). Conclusions: Iodine concentration in left ventricular myocardium of patients without significant coronary artery stenosis varied depending on the injection protocol and appeared more heterogeneous in different wall regions at faster injection rate and greater iodine load. Signal-to-noise and contrast-to-noise gradually improved when decreasing VMI energy, although at the expenses of higher noise, demonstrating the potential of DE-DLCT to enhance objective image quality

    Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images.

    Get PDF
    To quantitatively evaluate the impact of virtual monochromatic images (VMI) on reduced-iodine-dose dual-energy coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess the image quality in vivo, compared with conventional CT obtained with regular iodine dose. A phantom simulating regular and reduced iodine injection was used to determine the accuracy and precision of lumen area segmentation for various VMI energy levels. We retrospectively included 203 patients from December 2017 to August 2018 (mean age, 51.7 ± 16.8 years) who underwent CCTA using either standard (group A, n = 103) or reduced (group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV VMI (group B). We recorded the location of venous catheters. In vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm <sup>2</sup> , respectively (p < 0.001), and a precision of 0.982 vs. 1.229 mm <sup>2</sup> , respectively (p < 0.001), in simulated overweight adult subjects. In vivo, the rate of diagnostic CCTA in groups A and B was 88.4% (n = 91/103) vs. 89% (n = 89/100), respectively, and noninferiority of protocol B was inferred. Contrast-to-noise ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and comparable for lumen versus calcium (p = 0.423). Venous catheters were more often placed on the forearm or hand in group B (p < 0.001). In vitro, low-keV VMI improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and injection rate reduction while maintaining diagnostic image quality and improves the CNR between lumen versus fat and muscle. • Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management. • Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochromatic image reconstructions performed better in phantom-based vessel cross-sectional segmentation and proved to be noninferior in vivo. • Patients receiving reduced-iodine-dose dual-energy coronary CT angiography often had the venous catheter placed on the forearm or wrist without compromising image quality

    Wall Orientation and Shear Stress in the Lattice Boltzmann Model

    Full text link
    The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near the staircase boundary. Finally, we calculate the wall shear stress in the human abdominal aorta in steady conditions using our method and compare the results with a standard finite volume solver and experimental data available in the literature. Applications of our ideas in a simplified protocol for data preprocessing in medical applications are discussed.Comment: 9 pages, 11 figure

    Prognostic significance of vascular and valvular calcifications in low- and high-gradient aortic stenosis

    Get PDF
    International audienceAims In low-gradient aortic stenosis (LGAS), the high valvulo-arterial impedance observed despite low valvular gradient suggests a high vascular load. Thoracic aortic calcifications (TACs) and valvular aortic calcifications (VACs) are, respectively, surrogates of aortic load and aortic valvular gradient. The aim of this study was to compare the respective contributions of TAC and VAC on 3-year cardiovascular (CV) mortality following TAVI in LGAS vs. high-gradient aortic stenosis (HGAS) patients. Methods and results A total of 1396 consecutive patients were included. TAC and VAC were measured on the pre-TAVI CT-scan. About 435 (31.2%) patients had LGAS and 961 (68.8%) HGAS. LGAS patients were more prone to have diabetes, coronary artery disease (CAD), atrial fibrillation (AF), and lower left ventricular ejection fraction (LVEF), P<0.05 for all. During the 3 years after TAVI, 245(17.8%) patients experienced CV mortality, 92(21.6%) in LGAS and 153(16.2%) in HGAS patients, P=0.018. Multivariate analysis adjusted for age, gender, diabetes, AF, CAD, LVEF, renal function, vascular access, and aortic regurgitation showed that TAC but not VAC was associated with CV mortality in LGAS, hazard ratio (HR) 1.085 confidence interval (CI) (1.019–1.156), P=0.011, and HR 0.713 CI (0.439–1.8), P=0.235; the opposite was observed in HGAS patients with VAC but not TAC being associated with CV mortality, HR 1.342 CI (1.034–1.742), P=0.027, and HR 1.015 CI (0.955–1.079), P=0.626. Conclusion TAC plays a major prognostic role in LGAS while VAC remains the key in HGAS patients. This confirms that LGAS is a complex vascular and valvular disease

    Quantitative fat and R2* mapping in vivo to measure lipid-rich necrotic core and intraplaque hemorrhage in carotid atherosclerosis

    Get PDF
    Purpose: The aim of this work was to quantify the extent of lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in atherosclerotic plaques. Methods: Patients scheduled for carotid endarterectomy underwent four-point Dixon and T1-weighted magnetic resonance imaging (MRI) at 3 Tesla. Fat and R2* maps were generated from the Dixon sequence at the acquired spatial resolution of 0.60 × 0.60 × 0.70 mm voxel size. MRI and three-dimensional (3D) histology volumes of plaques were registered. The registration matrix was applied to segmentations denoting LRNC and IPH in 3D histology to split plaque volumes in regions with and without LRNC and IPH. Results: Five patients were included. Regarding volumes of LRNC identified by 3D histology, the average fat fraction by MRI was significantly higher inside LRNC than outside: 12.64 ± 0.2737% versus 9.294 ± 0.1762% (mean ± standard error of the mean [SEM]; P < 0.001). The same was true for IPH identified by 3D histology, R2* inside versus outside IPH was: 71.81 ± 1.276 s−1 versus 56.94 ± 0.9095 s−1 (mean ± SEM; P < 0.001). There was a strong correlation between the cumulative fat and the volume of LRNC from 3D histology (R2 = 0.92) as well as between cumulative R2* and IPH (R2 = 0.94). Conclusion: Quantitative mapping of fat and R2* from Dixon MRI reliably quantifies the extent of LRNC and IPH

    Improved coronary calcium detection and quantification with low-dose full field-of-view photon-counting CT:a phantom study

    Get PDF
    OBJECTIVE: The aim of the current study was to systematically assess coronary artery calcium (CAC) detection and quantification for spectral photon-counting CT (SPCCT) in comparison to conventional CT and, in addition, to evaluate the possibility of radiation dose reduction. METHODS: Routine clinical CAC CT protocols were used for data acquisition and reconstruction of two CAC containing cylindrical inserts which were positioned within an anthropomorphic thorax phantom. In addition, data was acquired at 50% lower radiation dose by reducing tube current, and slice thickness was decreased. Calcifications were considered detectable when three adjacent voxels exceeded the CAC scoring threshold of 130 Hounsfield units (HU). Quantification of CAC (as volume and mass score) was assessed by comparison with known physical quantities. RESULTS: In comparison with CT, SPCCT detected 33% and 7% more calcifications for the small and large phantoms, respectively. At reduced radiation dose and reduced slice thickness, small phantom CAC detection increased by 108% and 150% for CT and SPCCT, respectively. For the large phantom size, noise levels interfered with CAC detection. Although comparable between CT and SPCCT, routine protocols CAC quantification showed large deviations (up to 134%) from physical CAC volume. At reduced radiation dose and slice thickness, physical volume overestimations decreased to 96% and 72% for CT and SPCCT, respectively. In comparison with volume scores, mass score deviations from physical quantities were smaller. CONCLUSION: CAC detection on SPCCT is superior to CT, and was even preserved at a reduced radiation dose. Furthermore, SPCCT allows for improved physical volume estimation. KEY POINTS: • In comparison with conventional CT, increased coronary artery calcium detection (up to 156%) for spectral photon-counting CT was found, even at 50% radiation dose reduction. • Spectral photon-counting CT can more accurately measure physical volumes than conventional CT, especially at reduced slice thickness and for high-density coronary artery calcium. • For both conventional and spectral photon-counting CT, reduced slice thickness reconstructions result in more accurate physical mass approximation

    Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms

    Get PDF
    Thrombus formation in intracranial aneurysms, while sometimes stabilizing lesion growth, can present additional risk of thrombo-embolism. The role of hemodynamics in the progression of aneurysmal disease can be elucidated by patient-specific computational modeling. In our previous work, patient-specific computational fluid dynamics (CFD) models were constructed from MRI data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intraluminal thrombus. In this study, we investigated the effect of increased flow residence time (RT) by modeling passive scalar advection in the same aneurysmal geometries. Non-Newtonian pulsatile flow simulations were carried out in base-line geometries and a new postprocessing technique, referred to as “virtual ink” and based on the passive scalar distribution maps, was used to visualize the flow and estimate the flow RT. The virtual ink technique clearly depicted regions of flow separation. The flow RT at different locations adjacent to aneurysmal walls was calculated as the time the virtual ink scalar remained above a threshold value. The RT values obtained in different areas were then correlated with the location of intra-aneurysmal thrombus observed at a follow-up MR study. For each patient, the wall shear stress (WSS) distribution was also obtained from CFD simulations and correlated with thrombus location. The correlation analysis determined a significant relationship between regions where CFD predicted either an increased RT or low WSS and the regions where thrombus deposition was observed to occur in vivo. A model including both low WSS and increased RT predicted thrombus-prone regions significantly better than the models with RT or WSS alone
    corecore