289 research outputs found

    Oxidation Kinetics of manganese(II) in seawater at nanomolar concentrations

    Get PDF

    Создание условий для адаптации выпускников на рынке труда

    Get PDF
    There are errors in Table 1. Standard deviation is reported instead of standard error of the mean (SEM) for post-challenge stress protocol. Erroneous mean and SEM values are present for group-housed females in the GnRH challenge. Please see the corrected Table 1 here

    No evidence for sex-specific effects of the maternal social environment on offspring development in Japanese quail (Coturnix japonica)

    Get PDF
    The social environment of reproducing females can cause physiological changes, with consequences for reproductive investment and offspring development. These prenatal maternal effects are often found to be sexspecific and may have evolved as adaptations, maximizing fitness of male and female offspring for their future environment. Female hormone levels during reproduction are considered a potential mechanism regulating sex allocation in vertebrates: high maternal androgens have repeatedly been linked to increased investment in sons, whereas high glucocorticoid levels are usually related to increased investment in daughters. However, results are not consistent across studies and therefore still inconclusive. In Japanese quail (Coturnix japonica), we previously found that pair-housed females had higher plasma androgen levels and tended to have higher plasma corticosterone levels than group-housed females. In the current study we investigate whether these differences in maternal social environment and physiology affect offspring sex allocation and physiology. Counter to our expectations, we find no effects of the maternal social environment on offspring sex ratio, sex-specific mortality, growth, circulating androgen or corticosterone levels. Also, maternal corticosterone or androgen levels do not correlate with offspring sex ratio or mortality. The social environment during reproduction therefore does not necessarily modify sex allocation and offspring physiology, even if it causes differences in maternal physiology. We propose that maternal effects of the social environment strongly depend upon the type of social stimuli and the timing of changes in the social environment and hormones with respect to the reproductive cycle and meiosi

    Berry phase and persistent current in disordered mesoscopic rings

    Full text link
    A novel quantum interference effect in disordered quasi-one-dimensional rings in the inhomogeneous magnetic field is reported. We calculate the canonical disorder averaged persistent current using the diagrammatic perturbation theory. It is shown that within the adiabatic regime the average current oscillates as a function of the geometric flux which is related to the Berry phase and the period becomes half the value of the case of a single one-dimensional ring. We also discuss the magnetic dephasing effect on the averaged current.Comment: 6 pages, RevTeX, 2 figures. To appear in Phys. Rev. B Rapid Communications Vol.60 No.12 (1999

    Enhanced mesoscopic fluctuations in the crossover between random matrix ensembles

    Full text link
    In random-matrix ensembles that interpolate between the three basic ensembles (orthogonal, unitary, and symplectic), there exist correlations between elements of the same eigenvector and between different eigenvectors. We study such correlations, using a remarkable correspondence between the interpolating ensembles late in the crossover and a basic ensemble of finite size. In small metal grains or semiconductor quantum dots, the correlations between different eigenvectors lead to enhanced fluctuations of the electron-electron interaction matrix elements which become parametrically larger than the non-universal fluctuations.Comment: 4 pages, RevTeX; 3 figure

    Seasonal distribution of genetic types of planktonic foraminifer morphospecies in the Santa Barbara Channel and its paleoceanographic implications

    Get PDF
    We present data on the temporal distribution of planktonic foraminifer genotypes (small subunit (SSU) ribosomal (r) RNA gene) and morphospecies (sediment traps) collected during 1999 in the Santa Barbara Channel. The sampling was undertaken with special emphasis on paleoceanographically important morphospecies, predominantly Globigerina bulloides. We found the same genotype of G. bulloides (type IId) in all the changing hydrographic regimes associated with this region throughout the annual cycle with the exception of January, when we recorded the additional presence of the high-latitude G. bulloides type IIa. We identified three new genotypes: Neogloboquadrina dutertrei type Ic, N. pachyderma dextral type II, and Turborotalita quinqueloba type IId. Our data suggest that G. bulloides type IId and possibly even the new genotypes listed above may be associated specifically with the complex hydrography or other environmental features characteristic of this area. Since G. bulloides type IId occurs throughout the year and its peak fluxes are related to different hydrographic regimes, we argue that the physical properties of the water column are not the major factor influencing the distribution and growth of this genotype. In sediment trap samples we found a skewed coiling ratio for G. bulloides (most likely representing type IId), which is related neither to sea surface temperature nor to genotypic difference. This study illustrates the necessity to map both the spatial and temporal distribution of the genetic types, especially in areas of paleoceanographic interest, where geochemical and paleontological proxies are being calibrated

    Observation of discrete time-crystalline order in a disordered dipolar many-body system

    Full text link
    Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter. As a particularly striking example, the interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic "time-crystalline" phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106\sim 10^6 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.Comment: 6 + 3 pages, 4 figure

    Entangled Hanbury Brown Twiss effects with edge states

    Full text link
    Electronic Hanbury Brown Twiss correlations are discussed for geometries in which transport is along adiabatically guided edge channels. We briefly discuss partition noise experiments and discuss the effect of inelastic scattering and dephasing on current correlations. We then consider a two-source Hanbury Brown Twiss experiment which demonstrates strikingly that even in geometries without an Aharonov-Bohm effect in the conductance matrix (second-order interference), correlation functions can (due to fourth-order interference) be sensitive to a flux. Interestingly we find that this fourth-order interference effect is closely related to orbital entanglement. The entanglement can be detected via violation of a Bell Inequality in this geometry even so particles emanate from uncorrelated sources.Comment: International Symposium "Quantum Hall Effect: Past, Present and Future

    Accurate extraction of nanometer distances in multimers by pulse EPR

    Get PDF
    B.E.B. is grateful for funding from the European Union (REA 334496). This work was supported by the EPSRC (EP/M024660/1), the Wellcome Trust [099149/Z/12/Z], and the Royal Society (RG140723).Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron-electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane embedded ion channels where data analysis is commonly hindered by multi-spin effects.Publisher PDFPeer reviewe

    Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 29 (2010): 3336-3345, doi:10.1016/j.quascirev.2010.08.013.Millennial-scale climate fluctuations of the last deglaciation have been tied to abrupt changes in the Atlantic Meridional Overturning Circulation (MOC). A key to understanding mechanisms of MOC collapse and recovery is the documentation of upper ocean hydrographic changes in the vicinity of North Atlantic deep convection sites. Here we present new high-resolution ocean temperature and δ18Osw records spanning the last deglaciation from an eastern subpolar North Atlantic site that lies along the flow path of the North Atlantic Current, approaching deep convection sites in the Labrador and Greenland-Iceland-Norwegian (GIN) Seas. High-resolution temperature and δ18Osw records from subpolar Site 980 help track the movement of the subpolar/subtropical front associated with temperature and Atlantic MOC changes throughout the last deglaciation. Distinct δ18Osw minima during Heinrich-1 (H1) and the Younger Dryas (YD) correspond with peaks in ice-rafted debris and periods of reduced Atlantic MOC, indicating the presence of melt water in this region that could have contributed to MOC reductions during these intervals. Increased tropical and subtropical δ18Osw during these periods of apparent freshening in the subpolar North Atlantic suggest a buildup of salt at low latitudes that served as a negative feedback on reduced Atlantic MOC.Support for this research was provided by the U.S. National Science Foundation (JFM and DWO) and a postdoctoral scholarship funded in part by the Gary Comer Science and Education Foundation (HB)
    corecore