246 research outputs found

    Eshem-Bethel and Herem-Bethel:New Evidence from Amherst Papyrus 63

    Get PDF
    The pluralism that characterized the religious life of the Jewish community at Elephantine (5th century BCE) included the veneration of Eshem-Bethel and Herem-Bethel. This contribution seeks to illuminate the identity of these gods on the basis of new evidence from the Aramaic texts in Demotic script known as papyrus Amherst 63. It shows that Eshem-Bethel and Herem-Bethel are particular manifestations of Bethel; the one in his role as fiery storm-god; the other in his capacity as sexual mate of a divine consort

    Memantine treatment does not affect compulsive behavior or frontostriatal connectivity in an adolescent rat model for quinpirole-induced compulsive checking behavior

    Full text link
    RATIONALE: Compulsivity often develops during childhood and is associated with elevated glutamate levels within the frontostriatal system. This suggests that anti-glutamatergic drugs, like memantine, may be an effective treatment. OBJECTIVE: Our goal was to characterize the acute and chronic effect of memantine treatment on compulsive behavior and frontostriatal network structure and function in an adolescent rat model of compulsivity. METHODS: Juvenile Sprague-Dawley rats received repeated quinpirole, resulting in compulsive checking behavior (n = 32; compulsive) or saline injections (n = 32; control). Eight compulsive and control rats received chronic memantine treatment, and eight compulsive and control rats received saline treatment for seven consecutive days between the 10th and 12th quinpirole/saline injection. Compulsive checking behavior was assessed, and structural and functional brain connectivity was measured with diffusion MRI and resting-state fMRI before and after treatment. The other rats received an acute single memantine (compulsive: n = 12; control: n = 12) or saline injection (compulsive: n = 4; control: n = 4) during pharmacological MRI after the 12th quinpirole/saline injection. An additional group of rats received a single memantine injection after a single quinpirole injection (n = 8). RESULTS: Memantine treatment did not affect compulsive checking nor frontostriatal structural and functional connectivity in the quinpirole-induced adolescent rat model. While memantine activated the frontal cortex in control rats, no significant activation responses were measured after single or repeated quinpirole injections. CONCLUSIONS: The lack of a memantine treatment effect in quinpirole-induced compulsive adolescent rats may be partly explained by the interaction between glutamatergic and dopaminergic receptors in the brain, which can be evaluated with functional MRI

    Magnetic resonance imaging of local and remote vascular remodelling after experimental stroke.

    Get PDF
    The pattern of vascular remodelling in relation to recovery after stroke remains largely unclear. We used steady-state contrast-enhanced magnetic resonance imaging to assess the development of cerebral blood volume and microvascular density in perilesional and exofocal areas from (sub)acutely to chronically after transient stroke in rats. Microvascular density was verified histologically after infusion with Evans Blue dye. At day 1, microvascular cerebral blood volume and microvascular density were reduced in and around the ischemic lesion (intralesional borderzone: microvascular cerebral blood volume = 72 ± 8%; microvascular density = 76 ± 8%) (P < 0.05), while total cerebral blood volume remained relatively unchanged. Perilesional microvascular cerebral blood volume and microvascular density subsequently normalized (day 7) and remained relatively stable (day 70). In remote ipsilateral areas in the thalamus and substantia nigra - not part of the ischemic lesion - microvascular density gradually increased between days 1 and 70 (thalamic ventral posterior nucleus: microvascular density = 119 ± 9%; substantia nigra: microvascular density = 122 ± 8% (P < 0.05)), which was confirmed histologically. Our data indicate that initial microvascular collapse, with maintained collateral flow in larger vessels, is followed by dynamic revascularization in perilesional tissue. Furthermore, progressive neovascularization in non-ischemic connected areas may offset secondary neuronal degeneration and/or contribute to non-neuronal tissue remodelling. The complex spatiotemporal pattern of vascular remodelling, involving regions outside the lesion territory, may be a critical endogenous process to promote post-stroke brain reorganization.FSW – Publicaties zonder aanstelling Universiteit Leide

    Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst, the Netherlands

    Get PDF
    The aim of this study was to perform a field experiment to collect a high quality data set suitable for validating and improving pesticide leaching models and nutrient leaching models for drained and cracking clay soils. The transport of water, bromide, nutrients and the pesticides bentazone and imidacloprid was studied on a 1.2 ha experimental plot. Moisture profiles and groundwater tables were measured, starting in November 1997. Winter wheat was sown on 23 October 1997 and harvested on 20 August 1998. Bentazone and bromide were applied at 7 April 1998; imidacloprid was applied at 27 May when the soil was almost completely covered by the crop. The amount present in soil was measured within 2 days after application (32 sampling cores) and was found to vary between 80% of the nominal dose (imidacloprid) to 110 % (for bentazone). Manuring and soil cultivations were as usual for the wheat crop. Soil profiles were sampled at eight times (16 cores at each date, last in April 1999). Drain flow was continuously recorded and the water flow proportionally sampled for analysis of the test compounds. Groundwater was sampled periodically from sets of permanently placed filters at four depths at 16 sites. Sorption isotherms of the pesticides were measured with soil from 0-25 cm. Transformation rates of the pesticides were measured at different temperatures in soil material from topsoil and subsoil layers. Soil hydraulic properties and shrinkage characteristics were measured in the laboratory. Meteorological data (i.e. rainfall, air temperature, global radiation, air humidity etc.) groundwater levels and soil temperatures at three depths were monitored continuously. After 56 days, about 80% of the bromide dose was taken up by the crop, which demonstrates that bromide is not a suitable tracer in cropped soil during the growing season. After that time the bromide was gradually released again into the soil. Preferential transport through cracks and macropores of all test compounds was measured both in summer and in winter. This resulted in the highest concentration of bromide and bentazone measured in drain water already 21 days after application following 56 mm rainfall. Imidacloprid was already detected in groundwater at 1.3-1.5 m depth, 11 days after application, following 65 mm rainfall. High peaks in nitrate concentrations in the groundwater at 1.00-1.50 m depth and in the drain water were detected within 14-18 days after the first fertilizer application, following 94 mm of rainfall. Extreme high peaks in concentrations of ortho-P and soluble organic-P were measured in the drain water at respectively 2 days and 37 after slurry application (the only phosphorus application during the experiment). For nitrate concentrations in the drain water there were indications for bypass by preferential flow of `clean` rainwater to the drains

    Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke

    Get PDF
    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models

    Mouse Protocadherin-1 gene expression is regulated by cigarette smoke exposure in vivo

    Get PDF
    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo

    iSchools and archival studies

    Get PDF
    Whispers and rumors about the iSchool movement lead some to fear that this represents yet another shift away from the valued traditions of library schools, threatening something far different than what library science pioneers ever envisioned. Predating the iSchool movement, however, were other programmatic shifts such as those that led to the formalization of graduate archival education. This essay argues that such evolution is essential to our future, as iSchools tackle the increasingly complex issues confronting a digital society. We consider the mission and history of iSchools and of archival studies, the basic elements and concepts of archival studies that are critical to iSchools, and the relationship between iSchools and the changing nature of personal and institutional archives. © 2009 Springer Science+Business Media B.V

    Environmental toxicity, redox signaling and lung inflammation:the role of glutathione

    Get PDF
    Glutathione (γ-glutamyl-cysteinyl-glycine, GSH) is the most abundant intracellular antioxidant thiol and is central to redox defense during oxidative stress. GSH metabolism is tightly regulated and has been implicated in redox signaling and also in protection against environmental oxidant-mediated injury. Changes in the ratio of the reduced and disulfide form (GSH/GSSG) can affect signaling pathways that participate in a broad array of physiological responses from cell proliferation, autophagy and apoptosis to gene expression that involve H(2)O(2) as a second messenger. Oxidative stress due to oxidant/antioxidant imbalance and also due to environmental oxidants is an important component during inflammation and respiratory diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and asthma. It is known to activate multiple stress kinase pathways and redox sensitive transcription factors such as Nrf2, NF-κB and AP-1, which differentially regulate the genes for pro-inflammatory cytokines as well as the protective antioxidant genes. Understanding the regulatory mechanisms for the induction of antioxidants, such as GSH, versus pro-inflammatory mediators at sites of oxidant-directed injuries may allow for the development of novel therapies which will allow pharmacological manipulation GSH synthesis during inflammation and oxidative injury. This article features the current knowledge about the role of GSH in redox signaling, GSH biosynthesis and particularly the regulation of transcription factor Nrf2 by GSH and downstream signaling during oxidative stress and inflammation in various pulmonary diseases. We also discussed the current therapeutic clinical trials using GSH and other thiol compounds, such as N-acetyl-L-cysteine, fudosteine, carbocysteine, erdosteine in environment-induced airways disease
    corecore