66 research outputs found

    The Value of Information in Reverse Logistics

    Get PDF
    We explore the value of information in the context of a remanufacturer that faces uncertainty with respect to demand, product return, and product recovery (yield loss). We assume a single period model in which the operational decision of interest is the quantity of new product to order. Our objective is to evaluate the absolute and relative value of the different types of information that such a firm may choose to invest in order to reduce the uncertainty it experiences in matching supply with demand. The different types of information include demand, return, and yield loss. Our results are extensive and reveal that the value for any specific type of information depends both on the overall level of uncertainty and the level of uncertainty that is attributed to the information for which it explains. We develop and test a theoretical model that is predictive of 1) the value of each type of information, 2) the conditions that give rise to the value for each type of information, and 3) the relative value for each type of information

    Multicenter experience of upper extremity access in complex endovascular aortic aneurysm repair

    Get PDF
    Purpose: Upper extremity access (UEA) for antegrade cannulation of aortic side branches is a relevant part of endovascular treatment of complex aortic aneurysms and can be achieved using several techniques, sites, and sides. The purpose of this study was to evaluate different UEA strategies in a multicenter registry of complex endovascular aortic aneurysm repair (EVAR). Methods: In six aortic centers in the Netherlands, all endovascular aortic procedures from 2006 to 2019 were retrospectively reviewed. Patients who received UEA during complex EVAR were included. The primary outcome was a composite end point of any access complication, excluding minor hematomas. Secondary outcomes were access characteristics, access complications considered individually, access reinterventions, and incidence of ischemic cerebrovascular events. Results: A total of 417 patients underwent 437 UEA for 303 fenestrated/branched EVARs and 114 chimney EVARs. Twenty patients had bilateral, 295 left-sided, and 102 right-sided UEA. A total of 413 approaches were performed surgically and 24 percutaneously. Distal brachial access (DBA) was used in 89 cases, medial brachial access (MBA) in 149, proximal brachial access (PBA) in 140, and axillary access (AA) in 59 cases. No significant differences regarding the composite end point of access complications were seen (DBA: 11.3% vs MBA: 6.7% vs PBA: 13.6% vs AA: 10.2%; P =.29). Postoperative neuropathy occurred most after PBA (DBA: 1.1% vs MBA: 1.3% vs PBA: 9.3% vs AA: 5.1%; P =.003). There were no differences in cerebrovascular complications between access sides (right: 5.9% vs left: 4.1% vs bilateral: 5%; P =.75). Significantly more overall access complications were seen after a percutaneous approach (29.2% vs 6.8%; P =.002). In multivariate analysis, the risk for access complications after an open approach was decreased by male sex (odds ratio [OR]: 0.27; 95% confidence interval [CI]: 0.10-0.72; P =.009), whereas an increase in age per year (OR: 1.08; 95% CI: 1.004-1.179; P =.039) and diabetes mellitus type 2 (OR: 3.70; 95% CI: 1.20-11.41; P =.023) increased the risk. Conclusions: Between the four access localizations, there were no differences in overall access complications. Female sex, diabetes mellitus type 2, and aging increased the risk for access complications after a surgical approach. Furthermore, a percutaneous UEA resulted in higher complication rates than a surgical approach

    Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids

    Get PDF
    To replicate functional liver tissue in vitro for drug testing or transplantation, 3D tissue engineering requires representative cell models as well as scaffolds that not only promote tissue production but also are applicable in a clinical setting. Recently, adult liver-derived liver organoids are found to be of much interest due to their genetic stability, expansion potential, and ability to differentiate toward a hepatocyte-like fate. The current standard for culturing these organoids is a basement membrane hydrogel like Matrigel (MG), which is derived from murine tumor material and apart from its variability and high costs, possesses an undefined composition and is therefore not clinically applicable. Here, a cellulose nanofibril (CNF) hydrogel is investigated with regard to its potential to serve as an alternative clinical grade scaffold to differentiate liver organoids. The re

    Association of circulating microRNA-122 and microRNA-29a with stage of fibrosis and progression of chronic hepatitis in Labrador Retrievers

    Get PDF
    Background: Chronic hepatitis (CH) in dogs is common and has the tendency to progress to liver cirrhosis (LC). Circulating microRNAs might have the potential as markers for disease progression. Objectives: To investigate whether concentration of specific microRNAs in serum correlate with the stage and grade of CH in Labrador Retrievers. Animals: Twenty-two Labrador Retrievers with histological CH (n = 8), LC (n = 7), and normal liver (NL, n = 7). Methods: In this retrospective study, serum concentrations of miR-122, miR-29a, miR-133a, miR-181b, and miR-17-5p were measured by quantitative real-time PCR and evaluated using univariate linear regression in dogs. A multivariate model was fit including the grade of hepatitis and the stage of fibrosis. Results: Of the 5 microRNAs, only circulating miR-122 and miR-29a were significantly associated with the grade of hepatitis and the stage of fibrosis. A positive correlation was identified between the grade of hepatitis with miR-122 (rs = 0.79, P <.001) and miR-29a (rs = 0.78, P <.001). Both miR-122 (rs = 0.81, P <.001) and miR-29a (rs = 0.67, P <.001) showed a significant positive correlation with the stage of fibrosis. MiR-122 concentrations were significantly higher in the CH (P <.01) and LC groups (P <.001) compared to the NL group. MiR-29a concentrations w

    A Chemically Defined Hydrogel for Human Liver Organoid Culture

    Get PDF
    End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering

    Large-scale production of LGR5-positive bipotential human liver stem cells

    Get PDF
    Background and Aims: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine‐rich repeat‐containing G protein‐coupled receptor 5 (LGR5)–positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. Approach and Results: Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40‐fold cell expansion after 2 weeks, compared with 6‐fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver‐like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up‐regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. Conclusions: We established a highly efficient method for culturing large numbers of LGR5‐positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation

    Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling of Hepatic Steatosis

    Get PDF
    Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    SUGAR-DIP trial: Oral medication strategy versus insulin for diabetes in pregnancy, study protocol for a multicentre, open-label, non-inferiority, randomised controlled trial

    Get PDF
    Introduction In women with gestational diabetes mellitus (GDM) requiring pharmacotherapy, insulin was the established first-line treatment. More recently, oral glucose lowering drugs (OGLDs) have gained popularity as a patient-friendly, less expensive and safe alternative. Monotherapy with metformin or glibenclamide (glyburide) is incorporated in several international guidelines. In women who do not reach sufficient glucose control with OGLD monotherapy, usually insulin is added, either with or without continuation of OGLDs. No reliable data from clinical trials, however, are available on the effectiveness of a treatment strategy using all three agents, metformin, glibenclamide and insulin, in a stepwise approach, compared with insulin-only therapy for improving pregnancy outcomes. In this trial, we aim to assess the clinical effectiveness, cost-effectiveness and patient experience of a stepwise combined OGLD treatment protocol, compared with conventional insulin-based therapy for GDM. Methods The SUGAR-DIP trial is an open-label, multicentre randomised controlled non-inferiority trial. Participants are women with GDM who do not reach target glycaemic control with modification of diet, between 16 and 34 weeks of gestation. Participants will be randomised to either treatment with OGLDs, starting with metformin and supplemented as needed with glibenclamide, or randomised to treatment with insulin. In women who do not reach target glycaemic control with combined metformin and glibenclamide, glibenclamide will be substituted with insulin, while continuing metformin. The primary outcome will be the incidence of large-for-gestational-age infants (birth weight >90th percentile). Secondary outcome measures are maternal diabetes-related endpoints, obstetric complications, neonatal complications and cost-effectiveness analysis. Outcomes will be analysed according to the intention-to-treat principle. Ethics and dissemination The study protocol was approved by the Ethics Committee of the Utrecht University Medical Centre. Approval by the boards of management for all participating hospitals will be obtained. Trial results will be submitted for publication in peer-reviewed journals
    corecore