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The Value of Information in Reverse Logistics 
 
 
 
Abstract 
 
 

We explore the value of information in the context of a remanufacturer that faces 

uncertainty with respect to demand, product return, and product recovery (yield loss). We 

assume a single period model in which the operational decision of interest is the quantity of new 

product to order.  Our objective is to evaluate the absolute and relative value of the different 

types of information that such a firm may choose to invest in order to reduce the uncertainty it 

experiences in matching supply with demand.  The different types of information include 

demand, return, and yield loss.   

Our results are extensive and reveal that the value for any specific type of information 

depends both on the overall level of uncertainty and the level of uncertainty that is attributed to 

the information for which it explains.  We develop and test a theoretical model that is predictive 

of 1) the value of each type of information, 2) the conditions that give rise to the value for each 

type of information, and 3) the relative value for each type of information.   
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1 Introduction 
 

As a general topic, the value of information (VOI) for inventory management has been 

extensively explored, with references and exercises in the earliest operations research textbooks 

(e.g., Wagner 1969, ch.16).  Recently, there has been renewed interest in this topic by both 

practitioners and academics that has paralleled the rise of e-commerce and the development of 

new information technologies.  These new technologies promise more timely and accurate 

information to reduce uncertainties with regard to supply and demand and thereby improve 

coordination and financial performance.  Indeed, much of the more recent literature on the VOI 

focuses on how information can be used to improve supply chain performance and the conditions 

in which information is most valuable (e.g. Gavirneni et al. 1999, Cachon and Fisher 2000, Lee 

et al. 2000, and Moinzadeh 2002).  Yet, there has been little research on the VOI in the context 

of reverse (remanufacturing) supply chains or supply chains with product returns.   

Remanufacturing has received increasing attention in the US (Guide 2000) because of its 

economic benefits, as well as regulatory and consumer demands for more environmentally 

friendly operations.  There are over 73,000 firms engaged in remanufacturing in the US that 

employ over 350,000 people (Lund 1998).  Remanufacturing provides a foundation for the 

development of closed-loop supply chains and focuses on value added product recovery.  

Closed-loop supply chains explicitly consider the reverse flows of materials in addition to the 

traditional forward flows of materials (Guide and Van Wassenhove 2003).  

Remanufacturing product returns provides a reuse alternative that may be value-creating 

for many products, but there are a number of complicating characteristics (Guide 2000) that 

require close managerial attention if operations are to be competitive.   One difference between 

remanufacturing and other forms of production is the coordination required between two supply 
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functions:  new parts, usually procured from an external supplier, and recovered parts, usually 

obtained from a dedicated remanufacturing shop.  Assuming that remanufactured product and 

new product are substitutes, the natural question arises as to how to plan the mix in order to 

satisfy demand.   

The coordination challenge is amplified by the considerable uncertainty regarding timing 

and quantity that typically characterize product return flows.  In addition, remanufacturing is 

often subject to stochastic yield.  The less that is known about the outcome of the recovery 

process, the harder it is to coordinate the procurement of new parts and the remanufacturing of 

returned products to meet demand.  The cumulative effect of these characteristics is greater 

uncertainty inherent in remanufacturing operations. Managers must take actions to reduce 

uncertainty in the timing and quantity of returns, balance return rates with demand rates, and 

make material recovery more predictable. In essence, there appears to be significant potential for 

information to reduce the inherent uncertainties for a firm operating in an environment with 

product returns.  The question is how much is information worth?  Perhaps more importantly, 

which type of information is most valuable and what are the conditions that give rise to the VOI? 

In this research we explore the VOI in the context of a remanufacturer that faces 

uncertainty with respect to demand, product returns, and product recovery (yield loss).  We 

model demand and product returns as independent random variables.  Product recovery is 

uncertain in that each returned unit can be successfully remanufactured to as good as new with a 

known probability and otherwise it is discarded without cost.  We assume a single period model 

in which the operational decision of interest is the quantity of new product to order.   

Our objective is to evaluate the absolute and relative value of the different types of 

information that such a firm may choose to invest in order to reduce the uncertainty it 
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experiences in matching supply with demand.  The different types of information include 

demand, return, and yield loss.  We consider five separate cases that are distinguished by the 

types of information that are known in each case.    In the base case, the firm knows no more 

than the distributions of the random variables and its cost structure.  Each of the other four cases 

considers information that fully explains one or more sources of uncertainty.  The VOI for each 

case is then measured as the improvement in total expected cost that a firm achieves with the 

given information set, relative to the base case.   

Our results are extensive and reveal that the VOI for any specific type of information 

depends both on the overall level of uncertainty and the level of uncertainty that is attributed to 

the information for which it explains (e.g. demand information explains demand uncertainty).  

We find that there is no dominance in value amongst the different type of information.  There are 

conditions in which demand information may be more (less) than return information and in 

which yield information may be more (less) than the other two types.  We develop and test a 

theoretical model that is predictive of 1) the value of each type of information, 2) sensitivity of 

the VOI, and 3) the relative value for each type of information.   

The rest of this paper is organized as follows.  In §2, we provide a review of the literature 

on the VOI for inventory management and position our contribution with respect to them.  In §3, 

we introduce an analytic model in which we evaluate the VOI with specific underlying 

distributional assumptions and then develop and test a generalized theoretical model on the VOI.  

§4 concludes our study with future research directions.  
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2 Literature Review 
 

 Recently, a few articles have emerged that provide literature reviews and taxonomies 

addressing the VOI for supply chain management.  Sahin and Robinson (2002) and Huang et al. 

(2003) are representative examples and each of the reviews provides a very broad overview of 

the literature and uses its own classification scheme.  Chen (2002) is notable for its depth of 

analysis by exploring the different types of information sharing and then explaining and 

comparing the analytical results among several key contributions to the field.  Collectively, the 

literature reviews indicate that a preponderance of the research in this area focuses on the value 

of demand information to improve supply chain performance.  Bourland et al. (1996), Gavirneni 

et al. (1999), and Lee et al. (2000) are representative contributions that explore the value of 

demand information in serial supply chains.  Cachon and Fisher (2000) and Moinzadeh (2002) 

are examples that explore the value of demand information in distribution systems.   

 There are a few papers that explore the value of supply information. Some of these 

consider cases where information such as available supplier capacity and lead-time is shared 

forward in the supply chain so that customers can reduce supply uncertainty (Van der Duyn 

Schouten et al. 1994 and Chen and Yu 2002).  Another form of supply uncertainty arises in 

perishable systems, where there may be uncertainty with regard to the age of the product that is 

used for replenishment.  Ketzenberg and Ferguson (2004) address the value of a supplier sharing 

the age of its inventory with a retailer to improve replenishment decisions for a perishable 

product.  Even so, none of these contributions address uncertainty with respect to product returns 

and remanufacturing yield nor do they provide a comparative assessment of the VOI with respect 

to demand information as we do in this study.  
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This is not to say that there is not a wealth of research that address reverse logistics issues 

like those observed in a remanufacturing facility in which there are uncertainties with respect to 

demand, return, and yield.  This literature falls under the general umbrella of closed-loop supply 

chain management.  For a fairly comprehensive discussion of the field see Fleischmann (2000), 

Guide and Van Wassenhove (2003), and Dekker et al. (2003).  The dissertation and books also 

contain extensive references to research dealing with inventory management and production, 

planning, and control in reverse logistics.   

While both the literature on the VOI and reverse logistics has grown considerably over the 

past decade, not many bridge these fields.  Ferrer and Ketzenberg (2004) address a 

remanufacturer that faces a tradeoff between limited information regarding remanufacturing 

yield and potentially long supplier lead-time.  The authors develop four decision–making models 

to evaluate the impact of yield information and supplier lead-time on manufacturing costs.  They 

identify the operating conditions under which these capabilities are valuable, along with their 

relative impact on financial performance.  Their results indicate that the yield information is 

generally quite valuable, while investments in supplier responsiveness provide trivial returns to 

products with few parts.  In their model, however, the only uncertainty is with respect to yield 

since their models assume an infinite supply of product returns and deterministic demand.  We 

differentiate our work here by evaluating the VOI in the context of uncertainties with respect to 

demand, return, and yield.   

Ketzenberg et al. (2004) also address the value of advanced yield information in the 

context of a mixed assembly-disassembly operation for remanufacturing.  The principal focus of 

this work is in determining the best line configuration.  Under a parallel configuration, there 

exist two separate dedicated lines, one for assembly and one for disassembly that are decoupled 
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by inventory buffers.  Under a mixed configuration, the same station is used for both disassembly 

and assembly of a specific part.  The authors investigate the value of advanced yield information 

on these two different configurations and find that this information generally improves flow-time.  

However, there are some instances where information lengthens flow time.  Although the authors 

model an environment with uncertainty in product returns and demands, they do not explore the 

VOI to explain these other sources of uncertainty.   

There are a few other studies that while they do not provide a specific treatment of the VOI, 

they do explore the impact of misinformation or accuracy of information.  For example, De Brito 

and van der Laan (2002) examine the value of misinformation regarding product returns.  Souza 

and Ketzenberg (2002) investigate the impact of inaccuracies in grading the quality of product 

returns on flow times in a remanufacturing job shop.   

Our research bridges and builds on the literature by providing a treatment on the VOI in 

which there are different types of information to address different sources of uncertainty.  In the 

next section, we introduce our model and provide both exact and approximate analysis on the 

VOI and the relative VOI between different types of information. 

3 Model 
 

The general setting is a remanufacturer that can satisfy demand with new product, 

remanufactured product, or a mix of both types. This assumes that the quality and reliability of 

the remanufactured product allow the interchange.  While it is less costly to remanufacture than 

procure new, on average, the rate of returns is less than demand so that at least some portion of 

demand will be satisfied with new product.  Figure 3.1 shows the material flow for both 

remanufactured and new product.  This material flow is well studied in the literature on 

repairable inventory and is predicated on a model originally developed by Simpson (1978). 



 

 7

returns R  

product 
recovery 

yield loss R-S 

serviceables S

inventory

order quantity Q 
external 
supplier 

demand D 

 
Figure 3.1: Material Flow 

 

We assume a single period model where the operational decision of interest is the 

quantity of new product Q  to order from a perfectly reliable external supplier with the objective 

to minimize total expected cost.  The decision is complicated by uncertainties with respect to the 

number of demands, the number of returns, and yield loss from the remanufacturing process.   

Let D  denote the random demand variable with mean Dµ , variance 2
Dσ , and let d  

denote its realization.  Likewise, define R  to be the random returns variable with mean Rµ , 

variance 2
Rσ , and let r  denote its realization.  We assume that  D  and R  are independent.   

 Remanufacturing is not capacitated and all product returns are remanufactured although 

the process is subject to stochastic yield.    That is, each product return can be successfully 

remanufactured and brought to a good as new state with probability γ  known as the recovery 

yield.    With probability1 γ− , remanufacturing is not successful and the returned unit is 

disposed.  Let Y denote the random variable that indicates if the repair of a product return is 

successful.  Hence, Y ~ Bernoulli (γ ).  We call those units that are successfully remanufactured 

serviceable returns.  Now, let S denote the serviceable returns random variable where  
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( )S Y R=  with mean Sµ , variance 2
Sσ , and let s  denote its realization.  The number of 

serviceable returns and the quantity of newly procured units are used to satisfy demand to the 

extent possible.  Any unsatisfied demands are lost and are assessed a shortage cost p per unit.  

Excess ending inventory is charged an overage cost h  per unit.  We summarize our main 

notation within a single table in Appendix 1.   

 Below we introduce a set of five information cases that differ with respect to the 

information that is known prior to the ordering decision.  The base case considers the scenario 

where the ordering decision is made prior to realizing demand, returns, and yield loss. The only 

known information includes the sufficient statistics for each random variable and the relevant 

costs.  The other four cases represent an improvement on the base case, where one or more 

additional items of information are available prior to the ordering decision.  Let I  denote an 

information case, where { }, , , ,∈I B D R DR S  as defined in Table 3.1 and let i  denote the 

additional information relative to the base case that is known prior to the ordering decision, 

where { }, ,i d r s⊂  as specified in the right-most column of Table 3.1.  We define the VOI for 

information case I  as ( ) / .C C Cψ = −I B I B    Consequently, ψ I  is the cost improvement of 

knowing additional information i  relative to the base case.   

 

 Case ( )I  Type of Information Additional Information ( )i  
B  Base No information∅  
D  Demand Number of demands d  
R  Return Number of returns r  
DR  Demand and Return Number of demands d  and number of returns r  
S  Serviceable Return Number of serviceable returns s  

Table 3.1: Information Cases 
 

We model the one period decision as a generalized newsvendor problem. See Mostard 
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and Teunter (2002) and Vlachos and Dekker (2003) for seminal research on the newsvendor 

problem with product returns.  Define |N i  as the net demand ( D S− ) over the period given 

information i  with CDF | ( )N iF ⋅ , mean |N iµ , and standard deviation |N iσ .  The total expected 

cost  ( | )C Q i  given order size Q  and conditioned on the information i  is 

[ ] [ ]| |

| |

| |

( | ) E E

( )d ( ) ( )d ( )

( ) ( ) ( )d

N i N i

Q

N i N iQ

Q

N i N i

C Q i p N Q h Q N

p N Q F z h Q N F z

p Q h p F z zµ

+ +

∞

−∞

−∞

= − + −

= − + −

= − + +

∫ ∫

∫

    (3.1) 

which is optimized for 

 1
|i N i

pQ F
h p

∗ − ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

         (3.2) 

(see e.g. Silver et al. 1998)1.  Although equation (3.1) is formulated in terms of continuous 

distributions, we get an analogous discrete formulation by replacing the integral with an 

appropriate summation.  The total unconditional costs CI  are obtained by integrating over all 

possible realizations i .  Therefore ( | )diC C Q i i
∞ ∗

−∞
= ∫I .      

 The rest of this section is organized as follows.  In §3.1, we provide exact analysis on the 

VOI when the demand and return processes are uniformly distributed.  Since the complexity of 

even this simplified model precludes analysis with uncertain yield, in §3.2 we provide 

approximate analysis for all information cases when demand and return processes are normally 

distributed.  In §3.3 we introduce and evaluate a generalized theoretical model on the VOI and 

then demonstrate the explanatory power of the model in §3.4.   
                                                 
1To simplify notation, if =I B  we drop the notation with respect to the conditioning on  i   
(which is the empty set). Then, |N i  reduces to N , iQ∗  reduces to Q∗ , etc. 
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3.1 Exact analysis: uniform demands and returns 
 

Assume that demands D  are uniformly distributed on [ , ]D Da b , 0Da ≥  and returns are 

uniformly distributed on [0, ]Rc , R Dc b≤ .  That is, the number of returns cannot exceed the 

maximum possible number of demands (see Figure 3.1.1).  Without prior information, 

/ 2D D Da cµ = + , / 12D Dcσ =  (with  d D Dc b a= −  ), / 2R Rcµ = , / 12R Rcσ = , and net 

demand has a symmetric, trapezoid-shaped distribution on [ , ]D R Da c b−  with mean  

( ) / 2N D D Ra c cµ = + −   and standard deviation 2 2( ) /12D Rc c+ .  These assumptions result in a 

closed form solution for the inverse of net demand, provided that there is no yield loss in the 

remanufacturing process. Including even the simplest yield process2 seriously complicates any 

exact analysis. Hence, we assume perfect yield so that S R≡ .  We use continuous uniform 

distributions rather than the discrete versions for mathematical tractability.    

 
Figure 3.1.1: Illustrative example of a return and demand distribution (left) and the 

corresponding net demand distribution (right). 
 

                                                 
2A yield process that still enables mathematical tractability and even has some practical 
relevance is the following: The quality of all the returns during the period is modeled through a 
Bernoulli process. That is, with probability γ  all returns are suitable for remanufacturing and 
with probability (1 )γ−  all returns have to be disposed. Yet, even this very simple yield process 
considerably complicates analysis, so we will not explore this venue here. 
 
 

aD bD

1/cR    

aD-cR bD-cRaD 

cD 

bDcR 0 

1/cD 

1/cR 

Demand 

Return 



 

 11

We assess the VOI exactly by deriving exact expressions for the optimal costs for each 

information case I , { }, ,∈I B D R .  Despite our simplifying assumptions an exact analysis is 

still not completely straightforward.  Consider that the generalized newsvendor equation (3.2) 

does not guarantee non-negative order quantities.  A negative value may occur if (expected) 

returns are very high compared to (expected) demand.  We therefore restrict the parameter 

settings to those values for which | 0N iQ∗ ≥ .  

Another complication arises from the form of the net demand distribution without prior 

information 1( )NF − ⋅ .  As Figure 3.1.1 illustrates, the density function consists of three separate 

piecewise continuous function and hence, so is the CDF.  The specific parameter settings 

determine exactly which of the three functions defines the optimal solution.  However, if the 

fraction h
h p+ , which can be interpreted as the probability of running out of stock, is sufficiently 

small, the optimal solution will be defined by the right hand tail.  Since in practice one often 

desires high service levels, this fraction is typically close to zero.  We therefore restrict ourselves 

to those parameter settings for which this condition holds, thereby simplifying the analysis. 

 

Lemma 1   If  min , , ,
2 2

R D D R D

D R D R

c c b c ah
h p c c c c

⎧ ⎫−
≤ ⎨ ⎬+ ⎩ ⎭

, then 

 22
2 3

D R D Rc c c c hC h
h p

⎛ ⎞+
= −⎜ ⎟⎜ ⎟+⎝ ⎠

B , 1
2 R

hpC c
h p

=
+D , and 1

2 D
hpC c

h p
=

+R .  

 Proof see Appendix 2.  

  

Now, define R

D

σ
σρ = .  Under the condition of Lemma 1 the following propositions hold. 
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Proposition 1   If demands and returns are uniformally distributed, then the value of demand 

information and the value of return information are given by 

1
4 21
3

p
h p h

h p

ρψ
ρρ

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟+⎝ ⎠ + −⎜ ⎟
+⎝ ⎠

D  and 11
4 21
3

p
h p h

h p

ψ
ρρ

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟+⎝ ⎠ + −⎜ ⎟
+⎝ ⎠

R . 

Proposition 2   If demands and returns are uniformally distributed, then the value of demand 

information versus the value of return information is characterized as follows: 

ψ ψ=D R  if and only if σ σ=D R  and ψ ψ>D R  if and only if σ σ>D R . 

Proposition 3   If demands and returns are uniformally distributed, then the limiting behavior 

of the VOI with respect to penalty cost p is as follows: 

1lim
1

D
p

D R

σψ
ρ σ σ→∞ = =

+ +D  and lim
1

R
p

D R

σρψ
ρ σ σ→∞ = =

+ +R . 

That is, for high service levels, the value of either demand or return information are 

completely determined through ρ , the ratio of the return and demand standard deviations. 

Furthermore, at the limit, the value of demand (return) information is monotonously decreasing 

(increasing) in ρ .  The proofs of Propositions 1-3 follow directly from the definition of VOI 

combined with Lemma 1.  In the following section, we explore whether the propositions also 

hold for normally distributed demand and return distributions. 

3.2 Approximate analysis: normal demands and returns 
 

We now assume that demands and returns are both normally distributed. We will derive 

approximate expressions for the expected cost for all five information cases and use those to 

determine the VOI.  We start by deriving the mean and variance of net demand conditional on 
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the available information for each case.  In doing so, we ignore the fact that the distribution of 

the number of returns R  is continuous rather than discrete, and apply the following well-known 

result from statistical theory.  If X  is a non-negative discrete random variable with mean µ   and 

variance 2σ , then the binomial distribution with the number of repetitions equal to the outcome 

of X  and probability of success γ , 0 1γ≤ ≤  has mean γµ  and variance 2 2 (1 )γ σ γ γ µ+ −  (Bain 

and Englehardt 1987).  The resulting means and variances for all cases are given in Table 3.2.1.  

  
Case Mean Nµ Variance 2

Nσ  

Base D Rµ µ−  2 2 2 (1 )D R Rσ γ σ γ γ µ+ + −  

Demand Rd µ−  2 2 (1 )R Rγ σ γ γ µ+ −  

Return D rµ γ−  2 (1 )D rσ γ γ+ −  

Demand and Return d rγ−  (1 )rγ γ−  

Serviceable Return D sµ −  2
Dσ  

Table 3.2.1: Conditional distribution of net demand 
 

The distribution of net demand is clearly normal for the case with information on the 

number of serviceable returns.  For the other cases, the exact distribution of net demand is 

unclear.  However, combining the two well-known results that (i) the difference of two normally 

distributed variables is again normal and (ii) according to the Central Limit Theorem the 

binomial distribution is asymptotically normal for large numbers of repetitions, it follows that net 

demand is approximately normally distributed (with mean and variance given in Table 3.2.1). 

For a representative example, Figure 3.2.1 confirms that the distribution of net demand is 

indeed approximately normal for all information cases.  In this example, the model parameters 

are 30Dµ = , 10Dσ = , 15Rµ = , 5Rσ = , and 0.6γ = .  The  realizations are  38d = , 13r = , and 

11s = .  Other examples show similar results.  In Figure 3.2.1, the estimated distribution function 
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based on 500 drawings of net demand is compared to the normal distribution function. The 

drawings of net demand are conditional on the known realizations.  For example, in the Return 

information case with 13r = , a drawing of net demand results from drawing demand from 

(30,10)N  and drawing serviceable return from (13,0.6)B .  The estimated distribution function 

is obtained by plotting the 500 drawings of net demand in ascending order against 1/ 500 ,  

2 / 500 , … , 499 / 500 , and 1 respectively.  
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Figure 3.2.1: Comparison of the distribution function of net demand based on 500 random 

drawings to the normal distribution function with mean and standard deviation as given in Table 
3.2.2 ( )30, 10, 15, 5, 38, 13, 11D D R R d r sµ σ µ σ= = = = = = =  

 

3.2.1 Expressions for the expected total cost 
 

The approximate closed-form expressions that we will derive for the expected total cost 

for all information cases are based on two assumptions.  First, based on the above results, the 

distribution of net demand is assumed to be normal for all cases.  Second, it is assumed that the 

optimal order quantity is strictly positive. This is justifiable, since the expected demand is 
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usually larger than the expected return in practical situations.  Without either of these two 

assumptions, the cost analysis would be far more complex. 

Based on the assumption of normal net demand, it easily follows that the newsvendor 

equation (3.2) can be rewritten as  

| |i N i N iQ kµ σ∗ = +          (3.3) 

where the safety factor k  is defined as 1 pk
h p

− ⎛ ⎞
= Φ ⎜ ⎟+⎝ ⎠

 and Φ  denotes the standard normal 

distribution function.  Combining equation (3.1) and equation (3.3) yields  

( )| | |( ) ( ) ( ) ( ) ( )i N i N i N iC Q hk h p G k hk h p G kσ σ σ∗ = + + = + +  

 where the loss function ( )G v  is defined as ( ) ( ) ( )
v

G v x v x dxφ
∞

= −∫  and φ  denotes the standard 

normal density function.  Note that the expected total cost ( | )iC Q i∗  is linear in the standard 

deviation of net demand |N iσ .  Hence, for each information case it holds that  

( ) |( | ) ( ) ( ) [ ].i i i N iC E C Q i hk h p G k E σ∗= = + +I      (3.4) 

Expressions for |[ ]i N iE σ  in the different cases can easily be determined using the results 

in Table 3.2.1 and are given in Table 3.2.2.  The expressions are closed-form for the Base, 

Demand, and Serviceable return cases, but not the other two cases since for those cases the 

standard deviation of net demand depends on the realized number of returns.  However, it is 

straightforward to determine a closed-form approximation and upper bound for these two cases 

by using Jensen's inequality.  This inequality states that for any concave function f  and 

stochastic variable X  it holds that [ ( )] ( [ ])E f X f E X≤  (Krantz 1999).  These upper bounds are 

also given in Table 3.2.2.  We provide insight into the tightness of the upper bounds in Appendix 

3 and they are demonstrated numerically in §3.4. 
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Case |[ ]i N iE σ  

Base 2 2 2 (1 )D R Rσ γ σ γ γ µ+ + −  

Demand 2 2 (1 )R Rγ σ γ γ µ+ −  

Return ( )( ) 2 2/ (1 ) (1 )R R D D Rr
r r drφ µ σ σ γ γ σ γ γ µ− + − ≤ + −∫

Demand and Return ( )( )/ (1 ) (1 )R R Rr
r r drφ µ σ γ γ γ γ µ− − ≤ −∫  

Serviceable Return Dσ  

Table 3.2.2: Expectation |[ ]i N iE σ  of the standard deviation of net demand 
 

Combining equation (3.4) and the expectation for (the upper bounds of) |[ ]i N iE σ  in Table 

3.2.2 leads to the following proposition. 

 Proposition 4  If demands and returns are normally distributed, then approximations for the 

value of information are  

2 2

2 2 2

(1 )
1

(1 )
R R

D R R

γ σ γ γ µ
ψ

σ γ σ γ γ µ

+ −
≈ −

+ + −
D                  

2

2 2 2

(1 )
1

(1 )
D R

D R R

σ γ γ µ
ψ

σ γ σ γ γ µ

+ −
≈ −

+ + −
R  

2 2 2

(1 )
1

(1 )
R

D R R

γ γ µ
ψ

σ γ σ γ γ µ

−
≈ −

+ + −
DR                 

2 2 2
1

(1 )
D

D R R

σψ
σ γ σ γ γ µ

≈ −
+ + −

S  

  For the special case with no yield loss ( 1γ =  ) this gives  

2 2

11  and 1 ,
1 1
ρψ ψ
ρ ρ

≈ − ≈ −
+ +

D R  where  /R Dρ σ σ= .  

As for the situation with uniform demands and returns (see Propositions 2 and  3 of §3.1), 

it turns out that the (approximate) value of demand, as well as return information, is completely 

determined through ρ , and that the value of demand information is larger if and only if ρ  is 

less than one.  The exact expressions for the VOI are not the same though. 
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3.3 Generalized model 
 

In this section, we build upon the results from §3.1 and §3.2 and develop a generalized 

model on the VOI.  This model enables a complete investigation into the conditions in which 

each type of information (demand, return, and yield) is most valuable and also enables a relative 

comparison of value between different types of information.  We begin by restating a key result 

from §3.2 that the VOI can be expressed, approximately, in terms of a reduction in the standard 

deviation of net demand, which we consider to be a proxy for the level of uncertainty.  From this 

perspective, we proceed in our analysis on the VOI by using the approximations as estimators for 

the VOI.  By doing so, we enable a comprehensive and holistic evaluation of the VOI. We will 

later show in §3.4 that the theoretical insights we obtain here largely explain the behavior we 

observe in numerical results.   

In this section, we use the notation x̂  to denote an estimator of x .  Therefore, let ψ̂ I  

denote an estimator of ψ I  as set forth in Proposition 4 of §3.2.  Furthermore, let ˆSσ  and ˆNσ  

denote estimators for Sσ  and Nσ  respectively, where ( )2 2ˆ 1S R Rσ γ σ γ γ µ= + −  and 

( )2 2 2ˆ 1N D R Rσ σ γ σ γ γ µ= + + − .    

3.3.1 On the value of information 
 

From our definitions for the estimators of the VOI, we find the VOI depends on both the 

amount of uncertainty that information explains and the overall level of uncertainty.  In Table 

3.3.1, we summarize the functional relationship between ψ̂ I  and the parameters Dσ , Rσ , Rµ , 

and γ  that influence ˆNσ .   
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Parameter 
Value of Information 

Dσ  Rσ  Rµ  γ  
ψ̂D  increasing decreasing decreasing convex 
ψ̂R  decreasing increasing decreasing increasing 
ψ̂DR  increasing increasing decreasing convex 
ψ̂S  decreasing increasing increasing concave 

Table 3.3.1: Sensitivity of ψ̂ I  with respect to each parameter 

 

Note that ˆNσ  is strictly increasing with respect to each parameter, except γ .  Consequently, 

we find that ψ̂ I  is either monitonically increasing or decreasing with respect to each parameter, 

exceptγ  as shown in Table 3.3.1.  Now, with respect toγ , ˆNσ  is largest at 0.5γ =  and smallest 

at 0.0γ =  and 1.0γ = .  In turn, this relationship gives rise to the convex and concave functional 

relationships between γ  and ψ̂ I  for each case as listed in Table 3.3.1 and we illustrate these in 

Figure 3.3.1 with an example where 2D Rσ σ= =  and 25Rµ =  

.
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Figure 3.3.1: ψ̂ I  as a function of yield where 2D Rσ σ= =  and 25Rµ = . 

Note that only for ψ̂R  do we find that the VOI is strictly increasing with respect toγ .  We 

observe that both  ψ̂D and ψ̂DR  are convex with respect to γ , with  minimum values at 1β  and 

γ = β1 
γ = β2 
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2β  respectively.  Conversely, ψ̂S  is concave with respect toγ , with a maximum value at 1β .  

The analytic expressions for both 1β  and 2β  are easily derived by solving the derivative of ψ̂ I  

with respect to γ  for the corresponding information case.  For example, we find 

( )1 22
R

R R

µβ
σ µ

= −
−

  for  
( )2

0 1
2

R

R R

µ
σ µ

≤ ≤
−

 and 2
R Rσ µ≠ , otherwise 1 1β = .   

Further examination of Figure 3.3.1 also provides us with some intuitively appealing 

results.  We observe for example that the value of demand information is greatest at 0γ = .  

Under this condition, there is no uncertainty with respect to returns or yield – demand is only met 

with newly purchased items.  Therefore, ˆ ˆ 0ψ ψ= =R S  and since all of the uncertainty in net 

demand is solely attributed to demand, ˆ ˆ 1.0ψ ψ= =D DR .  In other words, there is no residual 

uncertainty once demand is explained.    

As yield increases from zero, there is increasing uncertainty with respect to yield and 

returns so that ˆ ˆ and ψ ψR S  are both increasing while ψ̂D  is decreasing.  These results 

demonstrate that the value of any type of information is proportional to the portion of total 

uncertainty it seeks to explain.  As yield increases from zero, Dσ  represents a smaller portion of 

ˆNσ  and consequently, ψ̂D  must decrease. 

 Now, consider the VOI for each case on the right hand side of Figure 3.3.1 where 1γ = .  

As we find for 0γ = , there is no uncertainty with respect to yield (since all units are serviceable) 

so that all the uncertainty that arises from serviceable returns arises from the uncertainty in the 

returns process itself.  Hence,  ˆ ˆψ ψ=R S  and ˆ 1.0ψ =DR .   Moreover, since D Rσ σ=  in this 

particular example, then ˆ ˆψ ψ=D R . 
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As yield decreases from one, the uncertainty with respect to yield increases and at the same 

time, uncertainty with respect to the return process decreases since it is clear that 2 2
Rγ σ   is also 

decreasing.  Therefore, we observe a decrease in ψ̂R .  In our particular example, the increase in 

yield uncertainty is greater than the decrease in return uncertainty so that the overall level of 

uncertainty with respect to serviceable returns is greater.  Hence we observe an increase in ψ̂S  

and a corresponding decrease in ψ̂D .  This will always occur if 2 2R

R

µ
σ

>  and we find that for γ , 

1 1β γ≤ ≤ , ψ̂S  is decreasing with respect to γ  while ψ̂D  is increasing with respectγ . However, 

if   2 2R

R

µ
σ

≤ , then for γ , 0 1γ≤ ≤ , ψ̂S  is increasing with respect to γ  and ψ̂D  is decreasing with 

respect toγ .  We illustrate this latter scenario in Figure 3.3.2 with a numerical example where 

2D Rσ σ= =  and 3.Rµ =  
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Figure 3.3.2: ψ̂ I  as a function of yield where 2D Rσ σ= =  and 3Rµ = . 

 

We can also see from just the two illustrative examples provided in figures 3.3.1 and 3.3.2 

that there is no strict dominance relationship between ψ̂D  and ψ̂S , between ψ̂D  and ψ̂R ,  and 

γ = β1 

γ = β2 
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between ψ̂DR  and ψ̂S .  Clearly, ψ̂DR  will always be equal to or greater than either ψ̂D  or ψ̂R .  

Likewise, ψ̂S  will always be equal to or greater than ψ̂R .  In the next section, we clarify the 

relationships with respect to the relative VOI between the other information cases. 

3.3.2 On the relative value of information 
 

In §3.1, we found that ψ ψ=D R  for D Rσ σ=  and 1γ = .  This result also indicates that  

ψ ψ=D S  for D Sσ σ=  and 1γ = .  Moreover, we need to look no further than the equations for 

the estimators of the VOI to know that  ˆ ˆψ ψ=D S  for ˆD Sσ σ= , independent of γ .  In fact, the 

VOI for a given information case will equal the VOI for another information case whenever the 

proportion of total uncertainty they respectively explain is the same.  Consequently, to find the 

conditions when the VOI for two information cases are equal (or different), it is simply a matter 

of 1) formulating the difference between the respective VOI estimators, 2) setting the difference 

to zero, and 3) solving with respect to a parameter of interest.   

To demonstrate, we consider the example of determining when ˆ ˆψ ψ=D S  with respect 

to Rµ .  Here, we find 
( )

2 2 2

1
D R

R
σ γ σµ
γ γ
−

=
−

 and illustrate this point of equality in Figure 3.3.3 for a 

numerical example where 2D Rσ σ= =  so that 
( ) ( )

2 2 2 2 2 20.8 2 2 9
1 0.8 0.8 1

D R
R

σ γ σµ
γ γ
− ⋅ −

= = =
− −

 and for 

9Rµ > ,  ˆ ˆψ ψ>S D .  The same approach can be taken in determining the relative VOI between   

ψ̂S  and ψ̂DR  with respect to Rµ  or, for that matter, the relative VOI between any two 

information cases and with respect to any of the parameters. 
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Figure 3.3.3:  ψ̂ I  as a function of mean returns where 2D Rσ σ= =  and 0.80γ =  
 

3.4 Numerical examples 
 

We now proceed to demonstrate the explanatory power of the model presented in §3.3 

using a set of numerical examples.  In these examples, we compare the estimated VOI from our 

model that arises from our approximations to the exact VOI that arises from an exhaustive search 

for the optimal solution in each information case.  We find that our numerical results for the VOI 

demonstrate a high degree of correspondence with the theoretical model in terms of 1) the VOI 

for each information case, 2) sensitivity with respect to the parameters, and 3) the relative VOI 

among the information cases.   

From a practical perspective, any numerical test will require certain distributional 

assumptions.  Both of the analyses in §3.1 and §3.2 assume continuous demand and return 

distributions.  Yet, our interest in demonstrating the generality, and more importantly, the 

relevance, of our model to practice lead us to consider discrete distributions.  Moreover, there is 

no other practical or meaningful way to accommodate yield loss.  Hence, we test the model with 

discrete uniform and discrete normal distributions.  The flatness of the uniform distribution as 

( )
2 2 2

9
1

D R
R

σ γ σµ
γ γ

−
= =

−
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compared to the bell-shaped symmetry of the normal distribution provides a test of the model’s 

robustness with respect to distributional assumptions.  

Clearly, a discrete uniform distribution is straight-forward to implement numerically.  A 

discrete normal distribution, however, requires further consideration because there is no 

standardized discrete version and it is appropriate to avoid the realization of negative demands.  

Our approach is as follows.  Let ( )xφ , 0,1, 2...x =  denote the probability mass function of a 

discrete normal random variable with mean µ  and variance 2σ  and let ( )Φ ⋅  denote the 

cumulative density function for a continuous normal random variable with the same mean and 

variance.   Furthermore, we truncate the distribution between zero and a value z  such that 

( ) 0.999zΦ ≥ . Consequently, 

( )
( )
( ) ( )

( )

0.5 0
0.5 0.5 0

1 0.5

x
x x x x z

z x z
φ

⎧Φ =
⎪= Φ + −Φ − < <⎨
⎪ −Φ − =⎩

. 

Through a series of numerical experimentation, we find that the transformation results in 

an approximately normal random variable, with a mean that is within 0.1% of  µ  and a variance 

that is within 2% of 2σ , so long as the density below zero of the continuous random variable is 

negligible (<0.005).  We conclude that the approximation is sufficient for our test purposes and 

proceed below with both qualitative and quantitative assessments of the theoretical VOI.    

3.4.1 Qualitative assessment 
 

 We choose two quite different examples to qualitatively illustrate how well the results 

from the theoretical model explain the behavior we observe in numerical tests on the VOI.   The 

first example considers the case 2D Rσ σ= = , 50Dµ = , 20Rµ = , 10p = , and 1.0h = .  Figure 
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3.4.1 displays ψ I  as a function of γ .  Figure 3.4.1 (and later Figure 3.4.2) is actually composed 

of three separate charts.  The left-most chart presents the numerical results for the discrete 

normal distribution, while the center chart presents the theoretical results, and the right-most 

chart presents the numerical results for the discrete uniform distribution.  

  

Results for the Normal Distribution
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Results for the Uniform Distribution

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Yield

Va
lu

e 
of

 In
fo

rm
at

io
n

Demand Returns
Net Returns Demand and Returns

Theoretical Results
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Figure 3.4.1: Comparison of numerical results for uniform and normal distributions with 
theoretical results where 2D Rσ σ= = , 50Dµ =  20Rµ = , 10p = , and 1.0h = . 

 

 A comparison among the three charts in Figure 3.4.1 shows the high degree of 

correspondence between the numerical results and the theoretical results.  The VOI reported at 

each value of γ  for the discrete normal distribution is nearly identical to that of the theoretical 

results.  Moreover, while the results for the uniform distribution are not quite as close, we 

qualitatively observe the same relationships.   

 In Figure 3.4.2 we extend the comparisons to the case where 2Dσ = , 4Rσ = , and 

30Rµ = , while all other parameter values the same as before.  Here, we have a very different 

picture than observed in Figure 3.4.1.  In this case, the much greater uncertainty of the returns 

process relative to the demand process significantly alters the relative VOI among the 
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information cases.  Even so, we find a very high degree of correspondence between the 

numerical results for both distributions and the theoretical results.  

 

Results for the Normal Distribution
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Results for the Uniform Distribution
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Theoretical Results
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Figure 3.4.2:  Comparison of numerical results for uniform and normal distributions with 
theoretical results where 2Dσ = , 4Rσ = , 50Dµ = , 30Rµ = , 10p = , and 1.0h = . 

 

 Collectively, the comparisons made between the numerical results and the theoretical 

results in these two illustrative examples are representative of the more robust set of tests we 

explore in the next section.   

3.4.2 Quantitative assessment 
 

We employ a factorial design on the set of parameter values listed in Table 3.4.1.  The 

values chosen for Dσ  and Rσ  enable an exact and equivalent comparison between uniform and 

normal distributions where we can explore the behavior exhibited by the VOI for cases in which 

the uncertainty in demand is equal to, less than, or greater than that in the returns process.  The 

values for yield are limited to those that are generally observed to be economical in 

remanufacturing practice (Ferrer and Ketzenberg 2004).  We vary the values of the penalty cost 
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over a range to ensure a high service level and fix the holding cost at $1.00.  The values for the 

mean return rate correspond to fractions ( )0.2, 0.4, 0.6 of the mean demand rate where 50Dµ = . 

Parameter Values 
Dσ  1.41, 2.00, 3.16 

Rσ  1.41, 2.00, 3.16 

Rµ  10, 20, 30 
γ  0.7, 0.8, 0.9, 1.0 
p  5, 10, 20 

Table 3.4.1: Factorial Design 
 

With a full factorial design for the parameters as specified in Table 3.4.1, there are 324 

numerical examples for each distribution and these are duplicated for the theoretical model in 

order to provide a comparative analysis.  It is also appropriate to mention that the set of 

numerical examples is, at least partially, constrained by our interest in comparing the results of 

the uniform distribution and the normal distribution.  Clearly, there is less flexibility with 

choosing a value for the standard deviation of a uniform distribution.  Another limitation arises 

with respect to the discrete normal distribution in that we are restricted to selected values of µ  

and 2σ  to ensure that there is little density below zero in the corresponding continuous case.   

We report the results of the VOI for each information case in Table 3.4.2.  The values for 

the VOI are transformed to percentages for readability.  In this table, the VOI for each 

information case is reported in rows and the value reported in a column corresponds to the 

average VOI across all examples for a fixed parameter value as indicated by the column header.  

We have omitted the results with respect to the penalty cost as we have not observed any 

meaningful sensitivity with respect to this parameter – exactly as predicted by the theoretical 

model.  Note also that there are three rows of results exhibited for each information case:  one 

each for the results of the normal distribution, theoretical model, and uniform distribution.   
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Parameter 

Dσ  Rσ  Rµ  γ  

VOI Case 1.4 2.0 3.2 1.4 2.0 3.2 10 20 30 0.7 0.8 0.9 1.0 
N 15.8 25.1 40.8 34.1 28.1 19.3 31.0 26.8 23.8 25.2 25.4 26.9 31.4 
T 15.5 24.7 40.4 34.3 27.8 18.6 30.1 26.5 24.0 24.6 25.2 26.9 30.9 ψD  
U 18.5 27.6 42.2 35.4 30.3 22.5 33.8 28.8 25.6 24.8 25.5 28.0 39.3 
N 26.0 19.9 12.1 10.5 17.3 30.2 21.3 19.1 17.6 10.7 14.7 20.6 31.4 
T 27.4 20.8 12.5 11.1 18.2 31.4 22.2 20.0 18.5 12.1 16.1 21.8 30.9 ψR  
U 27.9 22.5 15.2 13.2 20.0 32.4 24.4 21.5 19.8 11.1 15.3 21.8 39.3 
N 53.8 58.7 67.3 56.1 58.9 64.8 67.6 58.7 53.4 39.2 44.9 55.5 100.0
T 56.4 61.0 69.1 58.4 61.2 66.9 69.9 61.0 55.5 41.2 47.9 59.5 100.0ψDR  
U 52.6 57.6 65.9 54.8 57.7 63.6 66.2 57.5 52.4 37.7 43.3 53.8 100.0
N 48.5 35.8 20.9 27.7 33.4 44.1 31.3 35.4 38.5 37.1 36.7 35.1 31.4 
T 47.8 35.3 20.4 26.8 32.9 43.9 31.0 34.8 37.8 36.8 36.1 34.4 30.9 ψS  
U 57.2 44.5 28.4 36.7 42.0 51.3 39.7 43.7 46.6 45.7 45.1 43.4 39.3 

Table 3.4.2:  Sensitivity analysis of the VOI for discrete normal (N), theoretical results (T), and 
discrete uniform (U).   The values for ψ I  have been transformed into percentages for readability. 
 

The results reported in Table 3.4.2 build on the illustrative examples reported earlier.  

Clearly, the VOI reported for the normal distribution across all parametric settings are quite close 

to the VOI we obtain for the theoretical model.  Further, the VOI reported for the uniform 

distribution, while not as close, are approximately the same as the model.  Note that the 

sensitivity of the VOI to each parameter is the same for each distribution and is consistent with 

the model.  There are, however, differences, between the theoretical results and the numerical 

results for each distribution that warrant closer examination.  For example, note that the 

theoretical model appears to under-estimate ψD , ψR , and  ψS , while over-estimate ψDR  for the 

uniform distribution.  We explore this observation in Table 3.4.3. 

 Table 3.4.3 reports the difference in the VOI between the theoretical results and the 

numerical results ( )ψ̂ ψ−I I  for each distribution according to percentiles within the set of 324 

numerical examples.  The zero percentile reports the smallest difference between the theoretical 

results and the numerical results for a given information case as specified by the column header. 

The 0.50 percentile reports the median difference and the 1.00 percentile reports the largest 
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difference.  Note that negative values indicate the theoretical model under-estimates the VOI, 

while positive values indicate the theoretical model over-estimates the VOI.   

 
Difference between Theoretical Results and 

Normal Distribution Results 
Difference between Theoretical Results 

and Uniform Distribution Results 

Percentile ψD  ψR  ψDR  ψS  ψD  ψR  ψDR  ψS  

0.00 -5.2 -5.2 0.0 -5.5 -18.6 -18.6 0.0 -20.1 
0.05 -2.1 -1.0 0.0 -3.1 -13.2 -3.2 0.0 -17.2 
0.10 -1.4 -0.6 0.0 -2.3 -10.3 -0.3 0.0 -15.9 
0.25 -0.8 -0.1 0.3 -1.3 -4.2 -2.7 0.7 -13.2 
0.50 -0.3 0.8 2.3 -0.6 -1.5 -0.2 3.0 -7.6 
0.75 0.3 1.8 3.4 -0.2 .4 1.3 5.0 -3.0 
0.90 0.1 2.8 4.5 0.2 1.7 2.6 6.6 -2.2 
0.95 1.9 3.5 5.2 0.5 2.9 3.6 7.5 -2.0 
1.00 3.8 4.9 9.0 1.5 6.4 6.1 9.6 -0.7 

Table 3.4.3: Difference (x 100) in the VOI reported between the normal distribution and the 
theoretical model (left) and between the uniform distribution and the theoretical model (right). 

 

 The differences reported for the normal distribution are mostly as expected.  For all 

information cases, except ψDR  even the largest absolute differences (zero and one percentiles) 

between the theoretical model and the numerical results are quite small.  Even for ψDR  the 

differences are quite small for a clear majority of the examples.  However, there appears to be a 

bias in over-estimating ψDR .  We believe over-estimation arises because the theoretical model 

does not account for the costs associated with returns in excess of demand.  Hence, even full 

information will not necessarily reduce cost to zero as predicted by the model.  Even so, we note 

that the bias exceeds 0.05 for less than 5% of the examples and the largest difference is 0.09. 

 As for the comparison of the VOI between the theoretical model and the uniform 

distribution, the difference between the two, while quite small for a preponderance of the cases, 

can be large – particularly in terms of under-estimating the VOI.  Consider for example that 

across all numerical examples, the theoretical model under-estimates ψS .  We believe that at 

least a partial explanation arises from the fact that under the uniform distribution, the VOI is 
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proportional to a decrease in the sum of the standard deviations for demand and serviceable 

returns, rather than the standard deviation of net demand as explained in §3.1.  For any example, 

2 2
D R D Rσ σ σ σ+ > + .  Accordingly, we should find that the uncertainty regarding a process will 

be under-estimated (since the denominator in ψ̂ I  is always larger) and it follows that we should 

also expect the VOI to be under-estimated.    

4 Conclusion 
 

In this research, we have studied the VOI in the context of a firm that can satisfy demand 

with either new product, remanufactured product, or a mix of both types.  There are three 

potential sources of uncertainty: demand, return, and yield.   We developed a theoretical model 

that provides complete, albeit approximate analysis on the VOI.  A clear result is that the value 

of any type of information is proportional to the amount of uncertainty that it seeks to explain, 

where the standard deviation of net demand is a proxy for uncertainty.  Indeed, our model and 

results both formalize and verify our intuition. 

There are several contributions that arise from our analysis.  The model, as encapsulated 

in Proposition 4, can be used to determine potential gains from information on demand, return, 

and yield.  This can be seen more directly by a simple comparison among 2
Dσ , 2 2

Rγ σ , and 

( )1 Rγ λ µ− .  The larger the value expressed by a term, the larger the potential gain from 

reducing the corresponding type of uncertainty.  Moreover, Proposition 4, and as numerically 

demonstrated in Table 3.4.2, indicates that ψ ψ ψ+ ≤D R DR  and similarly, 1.0ψ ψ+ ≤D S .  The 

message is to invest in more than one type of information, even if one type of uncertainty 

dominates, since the return on investment will be greater.  
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While our analysis is squarely focused on the value of information, the model also 

generalizes to determine the value of any investments to reduce uncertainty or otherwise 

influence the model parameters since value is implicit in the reduction of the standard deviation 

of net demand.  For example, the model enables an evaluation of the value to improve the quality 

of returns (and hence yield), perhaps through investments in product durability.  Naturally, the 

model extends to enable a comparison of the relative value among alternative investments and 

can also be used to provide a sensitivity analysis.   

Just as the model generalizes to the value of investments other than information, we 

believe that the model should also generalize to a framework for evaluating the value of other 

types of information that we have not explicitly incorporated into the model.  Indeed, this 

represents one important avenue for future research.  Consider that since value is implicit in 

uncertainty and the information that can reduce it, then theoretically the model should also be 

able to address other types of uncertainty and hence other types of information.  For example, we 

have not addressed uncertainty with respect to supplier service which is another potential source 

of uncertainty that may influence the ordering decision.   

There are several other important directions for future research.  First, our newsvendor 

solution and the optimality condition developed in this paper provide a good starting point for 

research on the multi-period case. Generally, a newsvendor solution can be used to determine an 

approximately optimal order quantity in a multi-period setting without a fixed setup or ordering 

cost.  This suggests that our results are also indicative for the multi-period case.  It should also be 

interesting to study the case where the return rate is not independent of the demand rate.    
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Appendix 1 
Table of Notation 

 
D  number of demands (stochastic variable) 

d  number of demands (realization) 

Dµ  expected number of demands 

Dσ  standard deviation of the number of demands 

R  number of returns (stochastic variable) 

r  number of returns (realization) 

Rµ  expected number of returns 

Rσ  standard deviation of the number of returns 

S  number of serviceable returns (stochastic variable) 

s  number of serviceable returns (realization) 

Sµ  expected number of serviceable returns 

Sσ  standard deviation of the number of serviceable returns 

N  net demand ( )N D S= −  

I  information case, where { }, , , ,∈I B D R DR S  

i  additional information relative to the base case, { }, ,i d r s⊂  

N iµ  mean of net demand given information i  

N iσ  standard deviation of net demand given information i  
γ  probability that a returned item can be remanufactured  
p  penalty cost 

h  holding cost 

Q  order quantity 

iQ∗  optimal order quantity given information i  

( | )C Q i  total expected cost for order quantity Q  given information i  

ψ I  value of information  
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Appendix 2 
 Proof of Lemma 1 

No information 

Assume R Dc c≤ .  The CDF of net demand is then given as follows. 

2

2

( )
2

( 2( ))
2

( )
2

,

,
( ) Prob( )

1 ,

D R

D R

R D

D

D

D R

z a c
D R Dc c

c z a
D D Rc

N
z b

D R Dc c

a c z a

a z b c
F z D R z

b c z b

− +

+ −

−

⎧ − ≤ ≤
⎪
⎪ ≤ ≤ −⎪= − < = ⎨
⎪ − − ≤ ≤
⎪
⎪⎩

 

The total expected costs ( )C Q  are optimized for 1( )p
N h pQ F∗ −

+= .  If  2( ) 1 R

D

cp
N d rh p cF b c+ ≥ − = −   

(condition 1a), then Q∗  is determined by the inverse of  ( )NF z  that corresponds with the right 

hand tail, i.e., D R Db c z b− ≤ ≤ : 

1 2( ) D R
N D

c c hpQ F b
h p h p

∗ −= = −
+ +

 

Note that under condition 1a, which can be rephrased as 2
R

D

ch
h p c+ ≤ , we have 0D rQ b c∗ ≥ − ≥ . 

Inserting Q∗  in the cost function gives 

( )( )
( )

( )

2

3

( )
2

( )
6

22
2 3

( ) ( ) ( ) ( )d

( ) ( ) 1 d

( ) ( )

D R

D D

D R

D

D R

D R D R

Q
N Na c

b z b
N D N c cQ

Q b
N N c c

c c c c h
h p

C Q p Q h p F z z

p Q h p b z

p Q h p Q

h

µ

µ µ

µ µ

∗

∗

∗

∗ ∗
−

−∗

−∗ ∗

+
+

= − + + ∫

= − + + − − −∫

= − + + − −

= −

 

where we used that  ( )dD

D R

b
N D Na c F z z b µ− = −∫ . 

Now assume  R Dc c≥ . The CDF of net demand is then given as follows. 
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2

2

( )
2

2( )
2

( )
2

,

( ) Prob( ) ,

1 ,

D R

D R

R D D

R

D

D R

z a c
D R D Rc c

z c a c
N D R Dc

z b
D Dc c

a c z b c

F z D R z b c z a

a z b

− +

+ − −

−

⎧ − ≤ ≤ −
⎪⎪= − < = − ≤ ≤⎨
⎪
− ≤ ≤⎪⎩

 

If  2( ) 1 D

R

cp
N Dh p cF a+ ≥ = −  (condition 1b), then the optimal value of Q  is determined by the 

inverse of  ( )NF z  that corresponds to the right hand tail, i.e., D Da z b≤ ≤ .  This function is 

exactly the same as for the previous case, R Dc c≤ .  The characterization of the optimal order 

quantity and the optimal costs are therefore exactly the same for both cases.  Note that under 

condition 1b, which can be rephrased as 2
D

R

ch
h p c+ ≤ , we have 0DQ a∗ ≥ ≥ . 

Demand information 

The CDF of net demand given that the number of demands equals d  reads 

| ( ) Prob( | ) , .R
RN d

R

z c dF z N z D d d c z d
c

+ −
= < = = − ≤ ≤  

The order quantity that minimizes ( | )C Q d  equals 

1
| .Rd N d

p hQ F d c
h p h p

∗ − ⎛ ⎞
= = −⎜ ⎟+ +⎝ ⎠

 

Note that  0dQ∗ ≥  as long as 0h
Rh pd c+− ≥ .  In that case, inserting dQ∗  in the cost function gives 

2( )
2

1
2

( | ) ( ) ( ) d

( ) ( )

Rd

RR

Rd

D

Q z c d
R cd cd d

Q c d
R cd

ph
Rh p

C Q d p d Q h p z

p d Q h p

c

µ

µ

∗

∗

+ −∗ ∗
−

+ −∗

+

= − − + + ∫

= − − + +

=

 

Clearly, ( | )dC Q d∗  does not depend on demand information d , so if for all  

{ }0h
Rh pd d c+− ≥  (condition 2), then 1

2( ) ph
Rh pidC C Q c∗

+≡ =D .  Condition 2 can be rephrased as  
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D

R

ah
h p c+ ≤  . 

Return information 

The CDF of net demand given that the number of returns equal r  reads 

| ( ) Prob( ) , .D
N r D D

D

z a rF z D r z a r z b r
c

− +
= − < = − ≤ ≤ −  

The order quantity that minimizes ( | )C Q r  equals 

1
| ( ) .r N r D D

p pQ F a r c
h p h p

∗ −= = − +
+ +

 

Note that 0rQ∗ ≥  as long as 0p
D Dh pa r c+− + ≥ .  In that case, the optimal costs are 

2( )
2

1
2

( ) ( ) ( ) d

( ) ( )

r D

DD

r D

D

Q z a r
r D ca rr

Q a r
D r c

ph
Dh p

C Q r p r Q h p z

p r Q h p

c

µ

µ

∗

∗

− +∗ ∗
−

− +∗

+

= − − + + ∫

= − − + +

=

 

If for all { }0p
r D Dh pa r c+− + ≥  (condition 3), then * 1

2( | ) ph
r Dh pC C Q r c+≡ =R . Condition 3 

can be rephrased as D R

D

b bh
h p c

−
+ ≤ . 

Grouping conditions 1-3, the above cost functions CB , CD , and CR  hold if  

{ }2 2min , , ,R D D R D

D R D R

c c b c ah
h p c c c c

−
+ ≤ . 
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Appendix 3 
Upper Bounds on the Standard Deviation of Net Demand 

 
 

To get insight into the tightness of the upper bounds, they can be seen as approximations 

based on Taylor series approximations (see Bain and Engelhardt 1987). The two term Taylor 

series approximation of any function ( )f x  around the value µ  is  

21( ) ( ) ( )( ) ( )( ) .
2

f x f f x f xµ µ µ µ µ′ ′′≈ + − + −  

 So, if X  is a stochastic variable with mean µ  and standard deviation σ  then  

21[ ( )] ( ) ( ) .
2

E f X f fµ µ σ′′≈ +  

 Applying this approximation for the Return case ( 2( ) (1 )Df r rσ γ γ= + −  ) gives  

( )
2

2 2 2 2
22

1(1 ) (1 ) 1 (1 ) .
8 (1 )

R
D D R

D R

E R σσ γ γ σ γ γ µ γ γ
σ γ γ µ

⎛ ⎞
⎜ ⎟⎡ ⎤+ − ≈ + − − −

⎣ ⎦ ⎜ ⎟+ −⎝ ⎠

 

 For the Demand and Return case ( ( ) (1 )f r rγ γ= −  ) we get  

( )

22
2 2

2
1 1(1 ) (1 ) 1 (1 ) (1 ) 1 .
8 8(1 )

R R
R R

RR

E R σ σγ γ γ γ µ γ γ γ γ µ
µγ γ µ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎜ ⎟⎜ ⎟− ≈ − − − = − − ⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 Note that the term ( )2
1
8

R

R

σ
µ  is at most 0.03 if Rµ  is at least twice as large as Rσ , a 

threshold which is often used to decide whether the Normal distribution is suitable in the first 

place.  Hence, the upper bound in Table 3.2.2 for the Demand and Return case is accurate for all 

relevant situations.  The upper bound is even tighter for the Return case. 
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