41 research outputs found

    The minimal preprocessing pipelines for the Human Connectome Project

    Get PDF
    The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinate spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP's acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements to the pipelines

    Lutetium-labelled peptides for therapy of neuroendocrine tumours

    Get PDF
    Treatment with radiolabelled somatostatin analogues is a promising new tool in the management of patients with inoperable or metastasized neuroendocrine tumours. Symptomatic improvement may occur with 177Lu-labelled somatostatin analogues that have been used for peptide receptor radionuclide therapy (PRRT). The results obtained with 177Lu-[DOTA0,Tyr3]octreotate (DOTATATE) are very encouraging in terms of tumour regression. Dosimetry studies with 177Lu-DOTATATE as well as the limited side effects with additional cycles of 177Lu-DOTATATE suggest that more cycles of 177Lu-DOTATATE can be safely given. Also, if kidney-protective agents are used, the side effects of this therapy are few and mild and less than those from the use of 90Y-[DOTA0,Tyr3]octreotide (DOTATOC). Besides objective tumour responses, the median progression-free survival is more than 40 months. The patients' self-assessed quality of life increases significantly after treatment with 177Lu-DOTATATE. Lastly, compared to historical controls, there is a benefit in overall survival of several years from the time of diagnosis in patients treated with 177Lu-DOTATATE. These findings compare favourably with the limited number of alternative therapeutic approaches. If more widespread use of PRRT can be guaranteed, such therapy may well become the therapy of first choice in patients with metastasized or inoperable neuroendocrine tumours

    Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    Get PDF
    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.[Please see the Supplementary Note for acknowledgments.]This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.337

    A 3D view of dwarf galaxies with

    Get PDF
    We present a new homogeneous survey of VLT/FLAMES LR8 line-of-sight radial velocities (vlos) for 1604 resolved red giant branch stars in the Sculptor dwarf spheroidal galaxy. In addition, we provide reliable Ca II triplet metallicities, [Fe/H], for 1339 of these stars. From this combination of new observations (2257 individual spectra) with ESO archival data (2389 spectra), we obtain the largest and most complete sample of vlos and [Fe/H] measurements for individual stars in any dwarf galaxy. Our sample includes VLT/FLAMES LR8 spectra for ∼55% of the red giant branch stars at G  70% of the brightest stars, G < 18.75. Our spectroscopic velocities are combined with Gaia DR3 proper motions and parallax measurements for a new and more precise membership analysis. We look again at the global characteristics of Sculptor, deriving a mean metallicity of ⟨[Fe/H]⟩ = −1.82 ± 0.45 and a mean line-of-sight velocity of ⟨vlos⟩ = + 111.2 ± 0.25 km s−1. There is a clear metallicity gradient in Sculptor, −0.7deg dex−1, with the most metal-rich population being the most centrally concentrated. Furthermore, the most metal-poor population in Sculptor, [Fe/H]<  − 2.5, appears to show kinematic properties distinct from the rest of the stellar population. Finally, we combine our results with the exquisite Gaia DR3 multi-colour photometry to further investigate the colour-magnitude diagram of the resolved stellar population in Sculptor. Our detailed analysis shows a similar global picture as previous studies, but with much more precise detail, revealing that Sculptor has more complex properties than previously thought. This survey emphasises the role of the stellar spectroscopy technique and this galaxy as a benchmark system for modelling galaxy formation and evolution on small scales

    Stable long-range interhemispheric coordination is supported by direct anatomical projections

    No full text
    The functional interaction between the brain\u27s two hemispheres includes a unique set of connections between corresponding regions in opposite hemispheres (i.e., homotopic regions) that are consistently reported to be exceptionally strong compared with other interhemispheric (i.e., heterotopic) connections. The strength of homotopic functional connectivity (FC) is thought to be mediated by the regions\u27 shared functional roles and their structural connectivity. Recently, homotopic FC was reported to be stable over time despite the presence of dynamic FC across both intrahemispheric and heterotopic connections. Here we build on this work by considering whether homotopic FC is also stable across conditions. We additionally test the hypothesis that strong and stable homotopic FC is supported by the underlying structural connectivity. Consistent with previous findings, interhemispheric FC between homotopic regions were significantly stronger in both humans and macaques. Across conditions, homotopic FC was most resistant to change and therefore was more stable than heterotopic or intrahemispheric connections. Across time, homotopic FC had significantly greater temporal stability than other types of connections. Temporal stability of homotopic FC was facilitated by direct anatomical projections. Importantly, temporal stability varied with the change in conductive properties of callosal axons along the anterior-posterior axis. Taken together, these findings suggest a notable role for the corpus callosum in maintaining stable functional communication between hemispheres
    corecore