26 research outputs found

    LOFAR sparse image reconstruction

    Get PDF
    The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SK

    LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field

    Get PDF
    We report the discovery of PSR J0952−-0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952−-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope Îł\gamma-ray sources. PSR J0952−-0607 is in a 6.42-hr orbit around a very low-mass companion (Mc≳0.02M_\mathrm{c}\gtrsim0.02 M⊙_\odot) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from râ€Č=22.2r^\prime=22.2 at maximum to râ€Č>23.8r^\prime>23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-σ\sigma upper limit on the 0.3−100.3-10 keV X-ray luminosity of LX<1.1×1031L_X < 1.1 \times 10^{31} erg s−1^{-1} (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952−-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α∌−3\alpha\sim-3 (where S∝ΜαS \propto \nu^{\alpha}). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952−-0607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter

    LOFAR Sparse Image Reconstruction

    Get PDF
    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKAComment: Published in A&A, 19 pages, 9 figure

    LOFAR sparse image reconstruction

    Get PDF
    International audienceContext. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the " compressed sensing " (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2−3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A-and W-projections) required for current and future instruments such as LOFAR and SKA

    First release of Apertif imaging survey data

    Get PDF
    Context. Apertif is a phased-array feed system for the Westerbork Synthesis Radio Telescope, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program utilizing this upgrade started on 1 July 2019, with the last observations taken on 28 February 2022. The imaging survey component provides radio continuum, polarization, and spectral line data. Aims. Public release of data is critical for maximizing the legacy of a survey. Toward that end, we describe the release of data products from the first year of survey operations, through 30 June 2020. In particular, we focus on defining quality control metrics for the processed data products. Methods. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products and provide flags indicating the quality of those data products. Results. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams (of 7640 considered) are released. The median noise in the continuum images is 41.4 uJy beam(-1), with a slightly lower median noise of 36.9 uJy beam(-1) in the Stokes V polarization image. The median angular resolution is 11.6 \u27\u27/sin delta. The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy beam(-1), corresponding to a 3-sigma H i column density sensitivity of 1.8 x 10(20) atoms cm(-2) over 20 km s(-1) (for a median angular resolution of 24 \u27\u27 x 15 \u27\u27). Line cubes at lower frequency have slightly higher noise values, consistent with the global RFI environment and overall Apertif system performance. We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface and can be queried using a variety of standard tools

    Low-frequency radio absorption in Cassiopeia A

    Get PDF
    Cassiopeia A is one of the best-studied supernova remnants. Its shocked ejecta emits brightly in radio and X-rays. Its unshocked ejecta can be studied through infrared emission, the radio-active decay of 44^{44}Ti, and low frequency free-free absorption due to cold gas internal to the shell. Free-free absorption is affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies constrain a combination of these properties. We use LOFAR LBA observations at 30-77 MHz and L-band VLA observations to compare u−vu-v-matched images with a common resolution of 17". We simultaneously fit, per pixel, for the emission measure and the ratio of the emission from the unabsorbed front of the shell versus the absorbed back of the shell. We explore the effects that low temperatures and a high degree of clumping can have on the derived physical properties, such as mass and density. We also compile published radio flux measurements, fit for the absorption processes that occur in the radio band, and consider how they affect the secular decline of the source. We find a mass in the unshocked ejecta of M=2.95±0.48 M⊙M = 2.95 \pm {0.48} \,M_{\odot} for an assumed gas temperature of T=100T=100 K. This estimate is reduced for colder gas temperatures and if the ejecta are clumped. We measure the reverse shock to have a radius of 114114" ±\pm 6". We also find that a decrease in the amount of mass in the unshocked ejecta (as more and more material meets the reverse shock and heats up) cannot account for the observed low frequency behaviour of the secular decline rate. To reconcile our low frequency absorption measurements with models that predict little mass in the unshocked ejecta we need the ejecta to be very clumped, or the temperature in the cold gas to be low (∌10\sim10 K). Both conditions can jointly contribute to the high absorption.Comment: Accepted for publication in A&A v2: including the DOI, language edit

    The LOFAR pilot surveys for pulsars and fast radio transients

    Get PDF
    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~1.4 x 10^4 sq. deg, with 1-hr dwell times. Each observation covered ~75 sq. deg using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 sq. deg, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR "Superterp" stations, we formed 19 tied-array beams, together covering 4 sq. deg per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the first with LOFAR or any digital aperture array. LOTAS also re-detected 27 previously known pulsars. These pilot studies show that LOFAR can efficiently carry out all-sky surveys for pulsars and fast transients, and they set the stage for further surveying efforts using LOFAR and the planned low-frequency component of the Square Kilometer Array.Comment: 18 pages, 10 figures, accepted for A&
    corecore