160 research outputs found

    Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study

    Get PDF
    BACKGROUND: Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension. METHODS: To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied. RESULTS: Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m(3 )air. CONCLUSION: Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure

    Serum sodium concentration and the progression of established chronic kidney disease.

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Nephrology. The final authenticated version is available online at: https://doi.org/10.1007/s40620-018-0541-zBACKGROUND: Higher serum sodium concentration has been reported to be a risk factor for the development of incident chronic kidney disease (CKD), but its relationship with the progression of established CKD has not been investigated. We hypothesised that increased serum sodium concentration is a risk factor for estimated glomerular filtration rate (eGFR) decline in CKD. METHODS: This was a retrospective cohort study using data collected over a 6-year period, with baseline data obtained during the first 2 years. We included patients known to our renal service who had had a minimum of three blood tests every 2 years and an eGFR of < 60 mL/min/1.73 m2 at baseline. Exclusion criteria were renal replacement therapy, diabetes mellitus, heart failure and decompensated liver disease. A multiple linear regression model investigated the relationship between baseline serum sodium and eGFR decline after adjustment for confounding factors. RESULTS: 7418 blood results from 326 patients were included. There was no relationship between serum sodium concentration and estimated glomerular filtration rate at baseline. After multivariable adjustment, a 1 mmol/L increase in baseline serum sodium was associated with a 1.5 mL/min/1.73 m2 decline in eGFR during the study period (95% CI 0.9, 2.0). A reduction in eGFR was not associated with significant changes in serum sodium concentration over 6 years. CONCLUSION: Higher serum sodium concentration is associated with the progression of CKD, independently of other established risk factors. Conversely, significant alterations in serum sodium concentration do not occur with declining kidney function

    Inhibition of Dehydration-Induced Water Intake by Glucocorticoids Is Associated with Activation of Hypothalamic Natriuretic Peptide Receptor-A in Rat

    Get PDF
    Atrial natriuretic peptide (ANP) provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A), is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP) content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR) mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of water intake and revealed that the glucocorticoids can act centrally, as well as peripherally, to assist in the normalization of extracellular fluid volume

    Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    Get PDF
    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli

    Dietary reference values for sodium

    Get PDF
    Following a request from the European Commission, the EFSA Panel&nbsp;on Nutrition, Novel Foods and Food Allergens (NDA) derived dietary reference values (DRVs) for sodium. Evidence from balance studies on sodium and on the relationship between sodium intake and health outcomes, in particular cardiovascular disease (CVD)-related endpoints and bone health, was reviewed. The data were not sufficient to enable an average requirement (AR) or population reference intake (PRI) to be derived. However, by integrating the available evidence and associated uncertainties, the Panel&nbsp;considers that a sodium intake of 2.0&nbsp;g/day represents a level of sodium for which there is sufficient confidence in a reduced risk of CVD in the general adult population. In addition, a sodium intake of 2.0&nbsp;g/day is likely to allow most of the general adult population to maintain sodium balance. Therefore, the Panel&nbsp;considers that 2.0&nbsp;g sodium/day is a safe and adequate intake for the general EU population of adults. The same value applies to pregnant and lactating women. Sodium intakes that are considered safe and adequate for children are extrapolated from the value for adults, adjusting for their respective energy requirement and including a growth factor, and are as follows: 1.1&nbsp;g/day for children aged 1\u20133&nbsp;years, 1.3&nbsp;g/day for children aged 4\u20136&nbsp;years, 1.7&nbsp;g/day for children aged 7\u201310&nbsp;years and 2.0&nbsp;g/day for children aged 11\u201317&nbsp;years, respectively. For infants aged 7\u201311&nbsp;months, an Adequate Intake (AI) of 0.2&nbsp;g/day is proposed based on upwards extrapolation of the estimated sodium intake in exclusively breast-fed infants aged 0\u20136&nbsp;months

    A Tribute to Hugh de Wardener

    No full text
    corecore