13 research outputs found

    The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations

    Get PDF
    The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass) stored in forests with a spatial resolution of 1 ha. Using an extensive database of 110 897 AGB measurements from field inventory plots, we show that the spatial patterns and magnitude of AGB are well captured in our map with the exception of regional uncertainties in high-carbon-stock forests with AGB >250 Mg ha−1, where the retrieval was effectively based on a single radar observation. With a total global AGB of 522 Pg, our estimate of the terrestrial biomass pool in forests is lower than most estimates published in the literature (426–571 Pg). Nonetheless, our dataset increases knowledge on the spatial distribution of AGB compared to the Global Forest Resources Assessment (FRA) by the Food and Agriculture Organization (FAO) and highlights the impact of a country's national inventory capacity on the accuracy of the biomass statistics reported to the FRA. We also reassessed previous remote sensing AGB maps and identified major biases compared to inventory data, up to 120 % of the inventory value in dry tropical forests, in the subtropics and temperate zone. Because of the high level of detail and the overall reliability of the AGB spatial patterns, our global dataset of AGB is likely to have significant impacts on climate, carbon, and socio-economic modelling schemes and provides a crucial baseline in future carbon stock change estimates. The dataset is available at https://doi.org/10.1594/PANGAEA.894711 (Santoro, 2018)

    Phylogenetic classification of the world\u27s tropical forests

    Get PDF

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo

    No full text
    Foram estudadas a riqueza e a distribuição espacial da fauna de macroinvertebrados aquáticos em riachos da região de cerrado de Assis, SP, com a finalidade de verificar o efeito da ação antrópica sobre a fauna. As coletas foram realizadas em nascentes do Ribeirão Água do Cervo, principal fornecedor de água da cidade de Assis. Foram estabelecidos nove pontos de coleta nos quais foram colocados dez pacotes de seixos de tamanho padronizado (volume equivalente a 300 cm³ cada). Após 25 dias de exposição, os pacotes foram removidos do riacho. Os macroinvertebrados associados a cada pacote de seixos foram triados e identificados. Os resultados mostraram uma menor riqueza no local mais impactado. Não houve relação significativa entre os fatores físico-químicos e a fauna. No entanto, a ação antrópica foi significativamente relacionada com a fauna.The richness and spatial distribution of aquatic macroinvertebrates were studied in streams from a cerrado region, Assis, State of São Paulo, with the purpose of verifying the effect of the anthropic action on the fauna. The collections took place at the headwaters of the Ribeirão Água do Cervo (the main water supplier of the city of Assis). Nine collection stations were established in which ten standardized pebble packages were placed (equivalent volume, 300 cm³ each). After twenty-five days of exposure, the packages were removed from the stream. The macroinvertebrates associated to each of the pebble packages were removed and identified. The results showed a smaller richness in the most damaged station. There was not significant relation between the physicochemical factors and the fauna. The intensity of anthropic action was significantly related with the fauna.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome

    No full text
    The Brazilian Cerrado biome consists of a highly heterogeneous tropical savanna, and is one of the world's biodiversity hotspots. High rates of deforestation, however, place it as the second-largest source of carbon emissions in Brazil. Due to its heterogeneity, biomass and carbon stocks in the Cerrado vegetation are highly variable, and mapping and monitoring these stocks are not a trivial effort. To address this challenge, we built an aboveground woody biomass (AGWB) model for the Cerrado biome using 30-m resolution optical satellite imagery (Landsat-5 and Landsat-8), 25-m resolution SAR imagery (ALOS and ALOS-2), and a set of plot-based and LiDAR-derived AGWB estimates (n = 1858) from a wide network of researchers in Brazil. We implemented both a Classification and Regression Tree (CART) and a Random Forest (RF) algorithm to model AGWB over the native vegetation in the year 2019 (as classified by MapBiomas) in the Cerrado. The RF algorithms resulted in a slightly better result (R2 = 53%; rel. RMSE = 57%) than the CART model (R2 = 45%; rel. RMSE = 63%), but our map shows an underestimation of very high AGWB (negative bias over 200 t ha−1) and a slight overestimation of low AGWB (positive bias), especially in the RF model (bias of 1.19 t ha−1 against 0.86 t ha−1 for the CART model). We believe we have contributed to knowledge on the woody biomass stocks in the biome, especially in the predominant savanna woodlands, which is where the highest current rates of conversion take place in the Cerrado

    A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

    No full text
    Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement
    corecore