276 research outputs found

    Second harmonic optical coherence tomography

    Full text link
    Second harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical response of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second harmonic generation on molecular and tissue structures, this technique offers contrast and resolution enhancement to conventional optical coherence tomography.Comment: 3 pages, 5 figures. Submitted on November 8, 2003, this paper has recently been accepted by Optics Letter

    Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    Get PDF
    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle

    CARS and SHG microscopy to follow the collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin gel 3D cultures

    Full text link
    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with second harmonic generation (SHG) technique in order to follow the early stage of stem cell differentiation within a 3D scaffold. CARS microscopy can detect lipid membranes and droplet compartments in living cells and SHG microscopy enables a strong imaging contrast for molecules with a non-centrosymmetric ordered structure like collagen. One of the first evidence of hMSCs differentiation is the formation of an extracellular matrix (ECM) where the collagen protein is its main component. This work demonstrated the multimodal CARS and SHG microscopy as a powerful non-invasive label free technique to investigate the collagen production dynamic in living cell 3D cultures. Its ability to image the cell morphology and the produced collagen distribution on a long term (4 weeks) experiment allowed to obtain important information about the cell-scaffold interaction and the ECM production. The very low limit reached in detecting collagen has permitted to map even the small amount of collagen produced by the cells in few hours of culture. This demonstrates multimodal CARS and SHG microscopy as a novel method to follow cells collagen production and cells differentiation process. In addition the experiment shows that the technique is a powerful tool for imaging of very thick sections (about 4 mm). The study conducted on mesenchymal stem cell in fibrin gel cultures confirmed that differentiation stimulus is induced by the scaffold. The monitoring of stem cell differentiation within a scaffold in a non-destructive way will be an important advantage in regenerative medicine and tissue engineering field.Comment: 15 pages, 5 figures, ECONOS 201

    Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging

    Get PDF
    A femtosecond CARS-based nonlinear optical microscope was used to simultaneously image extracellular structural proteins and lipid-rich structures within intact aortic tissue obtained from myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits (WHHLMI). Clear differences in the NLO microscopic images were observed between healthy arterial tissue and regions dominated by atherosclerotic lesions. In the current ex-vivo study, we present a single parameter based on intensity changes derived from multi-channel NLO image to classify plaque burden within the vessel. Using this parameter we were able to differentiate between healthy regions of the vessel and regions with plaque, as well as distinguish plaques relative to the age of the WHHLMI rabbit

    Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy

    Get PDF
    In this study, multiphoton excitation was utilized to image normal and carious dental tissues noninvasively. Unique structures in dental tissues were identified using the available multimodality (second harmonic, autofluorescence, and fluorescence lifetime analysis) without labeling. The collagen in dentin exhibits a strong second harmonic response. Both dentin and enamel emit strong autofluorescence that reveals in detail morphological features (such as dentinal tubules and enamel rods) and, despite their very similar spectral profiles, can be differentiated by lifetime analysis. Specifically, the carious dental tissue exhibits a greatly reduced autofluorescence lifetime, which result is consistent with the degree of demineralization, determined by micro-computed tomography. Our findings suggest that two-photon excited fluorescence lifetime imaging may be a promising tool for diagnosing and monitoring dental caries

    The structural origin of second harmonic generation in fascia

    Get PDF
    Fascia tissue is rich in collagen type I proteins and can be imaged by second harmonic generation (SHG) microscopy. While identifying the overall alignment of the collagen fibrils is evident from those images, the tridimensional structural origin for the observation of SHG signal is more complex than it apparently seems. Those images reveal that the noncentrosymmetric (piezoelectric) structures are distributed heterogeneously on spatial dimensions inferior to the resolution provided by the nonlinear optical microscope (sub-micron). Using piezoresponse force microscopy (PFM), we show that an individual collagen fibril has a noncentrosymmetric structural organization. Fibrils are found to be arranged in nano-domains where the anisotropic axis is preserved along the fibrillar axis, while across the collagen sheets, the phase of the second order nonlinear susceptibility is changing by 180 degrees between adjacent nano-domains. This complex architecture of noncentrosymmetric nano-domains governs the coherent addition of 2ω light within the focal volume and the observed features in the SHG images taken in fascia

    Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models

    Get PDF
    This report assesses the ability of intrinsic two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to characterize features associated with the motility and invasive potential of epithelial tumor cells engineered in tissues. Distinct patterns of organization are found both within the cells and the matrix that depend on the adhesive properties of the cells as well as factors attributed to adjacent fibroblasts. TPEF images are analyzed using automated algorithms that reveal unique features in subcellular organization and cell spacing that correlate with the invasive potential. We expect that such features have significant diagnostic potential for basic in vitro studies that aim to improve our understanding of cancer development or response to treatments, and, ultimately can be applied in prognostic evaluation

    Nonlinear Optical Microscopy for Histology of Fresh Normal and Cancerous Pancreatic Tissues

    Get PDF
    BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an opportunity for the characterization of the progress of spontaneous pancreatic cancer and further application in a non-invasive manner
    corecore