22 research outputs found

    ANÁLISE E PREVISÃO DE SUÍNOS VIVOS ATRAVÉS DA REGRESSÃO LINEAR: UM ESTUDO DE CASO

    Get PDF
    Tendo em vista a evolução da suinocultura brasileira no cenĂĄrio mundial, nota-se o aumento da competitividade e a redução da lucratividade dos produtores, tornando-se necessĂĄrio o investimento no gerenciamento das granjas. Deste modo, Ă© importante o uso da estatĂ­stica para anĂĄlise de dados atravĂ©s de mĂ©todos quantitativos para auxiliar na resolução de problemas e tomada de decisĂŁo. Este trabalho utilizou regressĂŁo linear simples para analisar os dados e prever o nĂșmero de leitĂ”es nascidos vivos em uma empresa localizada na cidade de SĂŁo Miguel do Iguaçu no Oeste do ParanĂĄ. Aplicando estas ferramentas estatĂ­sticas percebe-se que neste caso, o mĂ©todo pode ser utilizado para analisar e prever a quantidade de suĂ­nos nascidos vivos

    A measurement of the millimetre emission and the Sunyaev-Zel'dovich effect associated with low-frequency radio sources

    Get PDF
    We present a statistical analysis of the millimetre-wavelength properties of 1.4GHz-selected sources and a detection of the Sunyaev–Zel’dovich (SZ) effect associated with the haloes that host them. We stack data at 148, 218 and 277GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4GHz. The thermal SZ effect associated with the haloes that host the AGN is detected at the 5σ level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass haloes (average M 200 ≈ 10 13 M. h −1 70 ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous haloes. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyse the contribution of radio sources to the angular power spectrum of the cosmic microwave background

    The new galaxy evolution paradigm revealed by the Herschel surveys

    Get PDF
    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys, which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a a single Galaxy Sequence (GS) rather than a star-forming ‘main sequence’ and a separate region of ‘passive’ or ‘red-and-dead’ galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically-red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations— they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    The Case for Probe-class NASA Astrophysics Missions

    Get PDF
    Astrophysics spans an enormous range of questions on scales from individual planets to the entire cosmos. To address the richness of 21st century astrophysics requires a corresponding richness of telescopes spanning all bands and all messengers. Much scientific benefit comes from having the multi-wavelength capability available at the same time. Most of these bands,or measurement sensitivities, require space-based missions. Historically, NASA has addressed this need for breadth with a small number of flagship-class missions and a larger number of Explorer missions. While the Explorer program continues to flourish, there is a large gap between Explorers and strategic missions. A fortunate combination of new astrophysics technologies with new, high capacity, low dollar-per-kg to orbit launchers, and new satellite buses allow for cheaper missions with capabilities approaching strategic mission levels. NASA has recognized these developments by calling for Probe-class mission ideas for mission studies, spanning most of the electromagnetic spectrum from GeV gamma-rays to the far infrared, and the new messengers of neutrinos and ultra-high energy cosmic rays. The key insight from the Probes exercise is that order-of-magnitude advances in science performance metrics are possible across the board for initial total cost estimates in the range 500M-1B dollars

    WISE x SuperCOSMOS photometric redshift catalog: 20 million galaxies over 3pi steradians

    Get PDF
    We cross-match the two currently largest all-sky photometric catalogs, mid-infrared WISE and SuperCOSMOS scans of UKST/POSS-II photographic plates, to obtain a new galaxy sample that covers 3pi steradians. In order to characterize and purify the extragalactic dataset, we use external GAMA and SDSS spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended-source catalog. After appropriate data cleaning we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of over 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of z_{med} = 0.2 but with a broad dN/dz reaching up to z>0.4. The photometric redshifts have a mean bias of |delta_z|~10^{-3}, normalized scatter of sigma_z = 0.033 and less than 3% outliers beyond 3sigma_z. Comparison with external datasets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for `all-sky' 3D cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source pre-selection and identification in forthcoming surveys such as TAIPAN or WALLABY

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE

    Get PDF
    A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
    corecore