92 research outputs found

    The evolution of multiple-insecticide resistance in UK populations of tomato leafminer, Tuta absoluta

    Get PDF
    BACKGROUND The tomato leafminer, Tuta absoluta, is an economically important pest of tomatoes in Europe, Africa, Asia and South America. In the UK this species is controlled using an integrated pest management (IPM) programme which incorporates the insecticides spinosad and chlorantraniliprole. In response to UK grower concerns of loss of efficacy of these compounds at certain sites, insecticide bioassays were performed on five populations collected from four commercial glasshouses and potential mechanisms of resistance investigated. RESULTS We observed high levels of resistance to spinosad in four of the strains, and in two of these tolerance to chlorantraniliprole. Selection of one of these strains with chlorantraniliprole rapidly resulted in a line exhibiting potent resistance to this compound. Sequencing of messenger RNA encoding the nicotinic acetylcholine receptor (nAChR) alpha 6 subunit, target of spinosad, revealed Ta alpha 6 transcripts in the spinosad-resistant strains that lack exon 4 and encode a highly truncated protein, or contain a triplet deletion in the predicted first transmembrane domain resulting in the loss of a highly conserved amino acid. Sequencing of the ryanodine receptor gene, encoding the target of diamide insecticides, of the chlorantraniliprole-selected line revealed an amino acid substitution (G4903V) that has been previously linked to diamide resistance in populations of T. absoluta in the Mediterranean and South America. CONCLUSION Taken together our results reveal emerging resistance in UK populations of T. absoluta to two of the most important insecticides used as part of IPM, with significant implications for the control of this species in the UK. (c) 2019 Society of Chemical IndustryThis work was funded by PhD studentship awards from the Agriculture and Horticulture Development Board (AHDB) (CP 162) and the Biotechnology and Biological Sciences Research Council (BBSRC) (grant number: 1096240). ER was supported by funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under the STomP project, grant agreement no. 219262 (ARIMNet)

    Insecticide resistance mediated 1 by an exon skipping event

    Get PDF
    Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) a6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taa6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the a6 subunit cDNA from spinosad selected and unselected strains of T. absoluta revealed all Taa6 transcripts of the selected strain were devoid of exon 3, with comparison of genomic DNA and mRNA revealing this is a result of exon skipping. Exon skipping cosegregated with spinosad resistance in survival bioassays, and functional characterization of this alteration using modified human nAChR a7, a model of insect a6, demonstrated that exon 3 is essential for receptor function and hence spinosad sensitivity. DNA and RNA sequencing analyses suggested that exon skipping did not result from genetic alterations in intronic or exonic cis-regulatory elements, but rather was associated with a single epigenetic modification downstream of exon 3a, and quantitative changes in the expression of trans-acting proteins that have known roles in the regulation of alternative splicing. Our results demonstrate that the intrinsic capacity of the a6 gene to generate transcript diversity via alternative splicing can be readily exploited during the evolution of resistance and identifies exon skipping as a molecular alteration conferring insecticide resistance

    Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.The Osmia bicornis whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession MPJT00000000. The RNAseq data generated in this study has been deposited in the Sequence Read Archive (SRA) under accession SRP065762. Accession numbers of the bee P450 genes manually curated in this study are shown in S5 Table. All other relevant data are within the paper and its Supporting Information files.The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.Biotechnology and Biological Science Research Council (BBSRC)Bayer AGEuropean Research Council (ERC

    Percutaneous dilatational tracheotomy in high-risk ICU patients

    Get PDF
    BACKGROUND Percutaneous dilatational tracheotomy (PDT) has become an established procedure in intensive care units (ICU). However, the safety of this method has been under debate given the growing number of critically ill patients with high bleeding risk receiving anticoagulation, dual antiplatelet therapy (DAPT) or even a combination of both, i.e. triple therapy. Therefore, the purpose of this study, including such a high proportion of patients on antithrombotic therapy, was to investigate whether PDT in high-risk ICU patients is associated with elevated procedural complications and to analyse the risk factors for bleeding occurring during and after PDT. METHODS PDT interventions conducted in ICUs at 12 European sites between January 2016 and October 2019 were retrospectively analysed for procedural complications. For subgroup analyses, patient stratification into clinically relevant risk groups based on anticoagulation and antiplatelet treatment regimens was performed and the predictors of bleeding occurrence were analysed. RESULTS In total, 671 patients receiving PDT were included and stratified into four clinically relevant antithrombotic treatment groups: (1) intravenous unfractionated heparin (iUFH, prophylactic dosage) (n = 101); (2) iUFH (therapeutic dosage) (n = 131); (3) antiplatelet therapy (aspirin and/or P2Y12 receptor inhibitor) with iUFH (prophylactic or therapeutic dosage) except for triple therapy (n = 290) and (4) triple therapy (DAPT with iUFH in therapeutic dosage) (n = 149). Within the whole cohort, 74 (11%) bleedings were reported to be procedure-related. Bleeding occurrence during and after PDT was independently associated with low platelet count (OR 0.73, 95% CI 0.56, 0.92, p = 0.009), chronic kidney disease (OR 1.75, 95{\%} CI 1.01, 3.03, p = 0.047) and previous stroke (OR 2.13, 95{\%} CI 1.1, 3.97, p = 0.02). CONCLUSION In this international, multicenter study bronchoscopy-guided PDT was a safe and low-complication airway management option, even in a cohort of high risk for bleeding on cardiovascular ICUs. Low platelet count, chronic kidney disease and previous stroke were identified as independent risk factors of bleeding during and after PDT but not triple therapy

    Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae

    Get PDF
    Abstract: The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host–plant associations, uncovering the widespread co‐option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.Peer reviewedFinal Published versio

    A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella

    Get PDF
    The diamondback moth, Plutella xylostella, is a damaging pest of cruciferous crops, and has evolved resistance to many of the insecticides used for control, including members of the diamide class. Previous work on the molecular basis of resistance to diamides has documented mutations in the target-site, the ryanodine receptor, in resistant populations of P. xylostella worldwide. In contrast the role of metabolic resistance to this insecticide class is significantly less clear. Here we show that overexpression of a flavin-dependent monooxgenase (FMO) confers resistance to the diamide chlorantraniliprole in P. xylostella. Transcriptome profiling of diamide resistant strains, with and without target-site resistance, revealed constitutive over-expression of several transcripts encoding detoxification enzymes compared to susceptible strains. Two of these, CYP6BG1, and PxFMO2 were particularly highly overexpressed (33,000 and 14,700-fold, respectively) in a resistant strain (HAW) lacking target-site resistance. After 17 generations without diamide selection the resistance of the HAW strain fell by 52-fold and the expression of PxFMO2 by >1,300-fold, however, the expression of CYP6BG1 declined by only 3-fold. Generation of transgenic Drosophila melanogaster expressing these genes demonstrated that PxFMO2, but not CYP6BG1, confers resistance in vivo. Overexpression of PxFMO2 in the HAW strain is associated with mutations, including a putative transposable element insertion, in the promoter of this gene. These enhance the expression of a reporter gene when expressed in a lepidopteran cell line suggesting they are, at least in part, responsible for the overexpression of PxFMO2 in the resistant strain. Our results provide new evidence that insect FMOs can be recruited to provide resistance to synthetic insecticides

    Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection

    Get PDF
    The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies

    The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae

    Get PDF
    © 2014 The Authors. Published by Elsevier Ltd. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence e (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400 species including many economically important crop plants. The intensive use of insecticides to control this species over many years has led to populations that are now resistant to several classes of insecticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent mechanisms of resistance described in this species to date. The array of novel resistance mechanisms, including several ‘first examples’, that have evolved in this species represents an important case study for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In this review we summarise the biochemical and molecular mechanisms underlying resistance in M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of insecticides, and the link between resistance and host plant adaptation.Peer reviewedFinal Published versio
    corecore