61 research outputs found

    Intelligent medicine in focus: the 5 stages of evolution in robot-assisted surgery for prostate cancer in the past 20 years and future implications

    Get PDF
    Robot-assisted surgery has evolved into a crucial treatment for prostate cancer (PCa). However, from its appearance to today, brain-computer interface, virtual reality, and metaverse have revolutionized the field of robot-assisted surgery for PCa, presenting both opportunities and challenges. Especially in the context of contemporary big data and precision medicine, facing the heterogeneity of PCa and the complexity of clinical problems, it still needs to be continuously upgraded and improved. Keeping this in mind, this article summarized the 5 stages of the historical development of robot-assisted surgery for PCa, encompassing the stages of emergence, promotion, development, maturity, and intelligence. Initially, safety concerns were paramount, but subsequent research and engineering advancements have focused on enhancing device efficacy, surgical technology, and achieving precise multi modal treatment. The dominance of da Vinci robot-assisted surgical system has seen this evolution intimately tied to its successive versions. In the future, robot-assisted surgery for PCa will move towards intelligence, promising improved patient outcomes and personalized therapy, alongside formidable challenges. To guide future development, we propose 10 significant prospects spanning clinical, research, engineering, materials, social, and economic domains, envisioning a future era of artificial intelligence in the surgical treatment of PCa

    DESIGN, ENGINEERING, AND ASSESSMENT OF MOBILE MINEFIELDS

    Get PDF
    Naval mine warfare typically supports a sea denial strategy through the denial and/or delay of the enemy’s use of the water space or by controlling sea traffic in a designated area. Sea mines have been effective for decades. However, with technological progress, mine countermeasure (MCM) efforts have reduced the risks of a minefield by detecting and/or neutralizing mines to establish and maintain a Q-route for safe passage. The concept of a mobile minefield is proposed to increase the difficulty of the enemy’s MCM and improve the survivability of the minefield by adding mobility. This research explores both the physical design concepts and the operational effectiveness of mobile mines based on simulations and models. The simulation results show that, compared to static mines, mobile mines improved the number of enemy ships destroyed by at least 200% and increased the time it took the enemy to transition through the minefield by 50%. The results suggest that the mobile minefield would be operationally useful for the Department of the Navy and this technology is worth pursing and exploring.Distribution Statement A. Approved for public release: Distribution is unlimited.Captain, Singapore ArmyCaptain, Singapore ArmyMajor, Singapore ArmyLieutenant, Taiwan NavyMajor, United States ArmyCivilian, Department of the NavyLieutenant, United States NavyCivilian, Singapore Technologies Engineering, SingaporeMajor, Singapore ArmyMajor, Singapore ArmyMajor, Singapore ArmyCommander, United States NavyCivilian, Defense Science and Technology Agency (DSTA), SingaporeMajor, Singapore ArmyMajor, Republic of Singapore Air ForceTenente-Coronel, Brazilian Air ForceLieutenant, United States NavyCivilian, Department of the ArmyMajor, Singapore ArmyMajor, Israel Defense ForcesCivilian, Defense Science Organisation, SingaporeCaptain, Singapore Arm

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    Characterization of the complete mitochondrial genome of the Chong’an Moustache Toad, Leptobrachium liui (Pope, 1947) with a phylogenetic analysis of Megophryidae

    No full text
    The Chong’an Mustache Toad, Leptobrachium liui (Pope, 1947) is a Chinese endemic species, inhabiting the mountain streams with rich vegetation in southeastern China. The first complete mitochondrial genome (mitogenome) of L. liui was assembled using the data of whole-genome sequencing. The size of the complete mitogenome for L. liui was 17,190 bp, which included 13 PCGs, 23 tRNAs with two concatenated tRNAMet genes, 2 rRNAs, a non-coding region, and a D-loop. The Bayesian tree shows that L. liui was positioned near L. leishanense within the genus Leptobrachium

    The Surgical Management of Traumatic Lower Cervical Spondylolisthesis with Posterior Percutaneous Pedicle Screw Fixation

    No full text
    We reported a technical report of traumatic lower cervical spondylolisthesisca used by bilateral pedicle fracture, without neurological compression. The patient was treated with the minimally invasive technique of percutaneous pedicle screw fixation. Fracture healing and normal cervical motion were confirmed by plain films and physical examinations on the 18-monthpostoperatively. The technique of percutaneous pedicle screw fixation might be an alternative strategy for the treatment of traumatic lower cervical spondylolisthesis with pedicle fracture
    corecore