94 research outputs found

    The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover

    Get PDF
    The diffusible signaling factor (DSF)-based quorum sensing (QS) system has emerged as a widely conserved cell–cell communication mechanism in Gram-negative bacteria. Typically, signals from the DSF family are cis-2-unsaturated fatty acids which regulate diverse biological functions. Recently, substantial progress has been made on the characterization of new members of this family of signals. There have also been new developments in the understanding of the biosynthesis of these molecules where dual enzymatic activities of the DSF synthase and the use of various substrates have been described. The recent discovery of a naturally occurring DSF turnover mechanism and its regulation provides a new dimension in our understanding of how DSF-dependent microorganisms modulate virulence gene expression in response to changes in the surrounding environment

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    The Diffusible Signal Factor Family of Bacterial Cell-Cell Signals

    No full text
    Bacterial cell-to-cell signals of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids that differ in their chain length and branching patterns. Signaling involving DSF family members occurs in diverse bacteria to include plant and human pathogens. In the majority of these organisms, the perception of DSF is linked to turnover of the second messenger cyclic di-GMP by one of two "core" pathways. Additional "accessory" signal transduction pathways can also be found, but are not widely conserved. DSF signaling acts to regulate diverse functions to include biofilm formation and architecture, antibiotic resistance, and the production of virulence factors in pathogens. DSF family signals can also participate in interspecies signaling with other bacteria and interkingdom signaling with the yeast Candida albicans. Such interactions may have importance in modifying microbial behavior during polymicrobial infections.</p
    • 

    corecore