9 research outputs found

    Types and sedimentary genesis of barriers and interlayers in the composite turbidite sand bodies of a deep-water canyon: A case study of the Central Canyon in the Qiongdongnan Basin

    No full text
    Deep-water oil and gas is currently the hot spot and difficulty of global oil and gas exploration, and the complex flow process inside the turbidite channels of deep-water canyons makes it difficult to characterize reservoir structures, identify barriers and interlayers and clarify the spatial distribution laws of reservoirs, which restricts the development of deep-water oil and gas. Taking the Central Canyon of the Qiongdongnan Basin as an example, this paper identifies and characterizes the barriers and interlayers of composite channel scale by means of seismic sedimentology, based on three-dimensional seismic and core data. Then, based on the turbidite filling process, barriers and interlayers are classified, and their genesis and control factors are analyzed. Finally, a development model of deep-water barriers and interlayers is established based on the quantitative analysis of sediment transportation system parameters. And the following research results are obtained. First, based on sedimentary genesis, barriers and interlayers are classified into four types, namely mudstone interlayers of lateral (aggradational) turbidite channel genesis (type A), mudstone interlayers of fine-grained turbidite channel genesis (type B), barriers of hemipelagic deep-water sediment genesis (type C), and calcareous petrophysical interlayers (type D). Second, based on the filling stage, barriers and interlayers are divided into four combination sequences, i.e., the initial canyon formation stage with strong sediment supply conditions (type A + type C and type B+ type C), the initial canyon formation stage with weak sediment supply conditions (type B + type C), the stable canyon development/late reworking stage with strong sediment supply conditions (types A + type D), and the stable canyon development/late reworking stage with weak sediment supply conditions (type D). Third, the development types and combination sequences of barriers and interlayers are controlled by the change of sediment transportation volume and terrain slope in the canyon. In the initial canyon formation stage, there is sufficient space for the development of turbidite, and the development of thin barriers and interlayers is controlled by sediment dischage volume, while the development of thick barriers and interlayers is controlled by terrain slope change. In the stable canyon development/late reworking stage, turbidite undergoes superimposed development and overbank. The sediment supply is the primary control factor of barrier and interlayer thickness, and the terrain slope change is the secondary factor. In conclusion, the development model of barriers and interlayers can be used to describe and predict the reservoir structure models under the same sedimentary background and provides a technical support for the exploration and development of deep-water oil and gas

    Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine

    No full text
    Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry

    Label-Free ZnIn<sub>2</sub>S<sub>4</sub>/UiO-66-NH<sub>2</sub> Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine

    No full text
    Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry

    Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review

    No full text
    corecore