15 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Plant feeding by an omnivorous predator affects plant phenology and omnivore performance

    Get PDF
    Plant feeding by omnivorous predators can induce plant defences, which decreases the performance of herbivores and influence behaviour of other predators. However, it is not known what are the consequences of this feeding for the plant and how this, in turn, affects the omnivore. We therefore investigated the effects of plant feeding by the omnivorous predator Macrolophus pygmaeus on plant development and reproduction. We also assessed the effects of these plant changes on survival and reproduction of the omnivore. Sweet pepper plants exposed to M. pygmaeus had significantly lower numbers of leaves and open flowers than clean plants, but numbers of fruits were similar. Moreover, the presence of the omnivore significantly shortened the period for flowers to become fruits. The dry weights of leaves plus stems and fruits were similar on clean plants and plants with the omnivore. Significantly higher numbers of seeds were found in fruits from plants with the omnivore than from clean plants. The survival rates of M. pygmaeus females and nymphs increased with numbers of flowers. Our results show that the presence of this omnivorous predator can benefit plants by increasing seed production, but the changes in plant phenology do not seem to benefit the omnivore.</p

    Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences

    Get PDF
    Plants possess various inducible defences that result in synthesis of specialized metabolites in response to herbivory, which can interfere with the performance of herbivores of the same and other species. Much less is known of the effects of plant feeding by omnivores. We found that previous feeding of the omnivorous predator Macrolophus pygmaeus on sweet pepper plants significantly reduced reproduction of the two-spotted spider mite Tetranychus urticae and western flower thrips Frankliniella occidentalis on the same plants, also on leaves that had not been exposed to the omnivore. In contrast, no effect was found on the reproduction of the green peach aphid Myzus persicae. Juvenile survival and developmental time of T. urticae and M. persicae, and larval survival of F. occidentalis were not affected by plant feeding by M. pygmaeus. Larvae of F. occidentalis feeding on leaves previously exposed to M. pygmaeus required longer to develop into adults. Defence-related plant hormones were produced locally and systemically after exposure to M. pygmaeus. The concentrations of 12-oxo-phytodienoic acid and jasmonic acid–isoleucine in the attacked leaves were significantly higher than in the corresponding leaves on the uninfested plants, and jasmonic acid concentrations showed the same trend, suggesting that jasmonic-acid-related defence pathways were activated. In contrast, similar concentrations of salicylic acid were found in the attacked leaves of M. pygmaeus-infested plants and uninfested plants. Our results show that plant feeding by omnivorous predators decreases the performance of herbivores, suggesting that it induces plant defences

    The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator

    Get PDF
    It has become clear that omnivorous predators can induce plant defences that affect the performance and host plant choice of herbivores. They are also known to induce the production of plant volatiles that can affect the behaviour of herbivores searching for plants. These volatiles may also affect the searching behaviour of other predators, which was investigated here. The predatory mite Phytoseiulus persimilis preferred plants previously exposed to the omnivorous mirid Macrolophus pygmaeus over clean plants. The mites were equally attracted to plants previously exposed to the omnivore and subsequently infested by spider mites (Tetranychus urticae, prey of the predatory mite and the omnivore) and plants infested with spider mites alone. Moreover, the mites were more attracted to plants infested with prey and subsequently exposed to the omnivore than plants infested with prey but not exposed to the omnivore. The predatory mites were also significantly more attracted to plants on which the omnivores were still present. Experience of the predatory mites with volatiles from plants previously exposed to the omnivore and without prey resulted in a loss of the preference for volatiles emitted by plants exposed to the omnivore. Analysis of the volatiles showed that plant exposure to omnivores induced qualitative and quantitative changes in the volatile blend. Together, these results suggest that omnivorous predators induce the production of plant volatiles that can interfere with the searching behaviour of other predators. The consequences of such interference for biological pest control remain to be investigated

    Induction of plant defenses: the added value of zoophytophagous predators

    No full text
    Several biological control agents of the hemipteran insect families Miridae, Anthocoridae and Pentatomidae, as well as mites of the family Phytoseiidae are known as zoophytophagous predators, a subset of omnivores, which are primarily predaceous but also feed on plants. It has been recently demonstrated that zoophytophagous predators are capable of inducing defenses in plants through their phytophagy. Despite the vast fundamental knowledge on plant defense mechanisms in response to herbivores, our understanding of defense induction by zoophytophagous predators and applied implications is relatively poor. In this review, we present the physiological basis of the defense mechanisms that these predators activate in plants. Current knowledge on zoophytophagous predator-induced plant defenses is summarized by groups and species for the predators of economic importance. Within each group, feeding habits and the effects of their induced-plant defenses on pests and natural enemies are detailed. Also, the ecological implications of how the induction of defenses mediated by zoophytophagous predators can interact with other plant interactors such as beneficial soil microorganisms and plant viruses are addressed. Based on the above, we propose three approaches to exploit zoophytophagous predator-induced defenses in crop protection and to guide future research. These include using predators as vaccination agents, employing biotechnological approaches, as well as applying elicitors to elicit/mimic predator-induced defenses

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    corecore