9 research outputs found

    Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions

    Get PDF
    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium’s probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%) > A (0.360%) > F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. [Int Microbiol 2015; 18(1):61-69]Keywords: Lactobacillus reuteri · Listeria monocytogenes · chitosan–calcium-alginate encapsulation · probiotic properties · simulated gastrointestinal condition

    Co-Overexpression of Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 Adversely Affects the Postoperative Survival in Non-small Cell Lung Cancer

    Get PDF
    IntroductionCyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 have been found to be overexpressed in non-small cell lung cancer (NSCLC). The aim of this study was to investigate the expression profiles of COX-2 and mPGES-1 and their correlation with the clinical characteristics and survival outcomes in patients with resected NSCLC.Methods/ResultsSeventy-nine paired adjacent normal-tumor matched samples were prospectively procured from patients undergoing surgery for NSCLC. The protein levels of COX-2 and mPGES-1 were assessed by Western blot analysis. Overexpression in the tumor sample was defined as more than twofold increase in protein expression compared with the corresponding adjacent normal tissue. Co-overexpression of COX-2 and mPGES-1 were further confirmed by immunohistochemistry. COX-2 was overexpressed in 58% and mPGES-1 in 70% of the tumor samples (p < 0.0001). Co-overexpression of mPGES-1 and COX-2 was noted in 43%, and they were unrelated to each other (p = 0.232). Co-overexpression of both proteins was significantly associated with less tumor differentiation (p = 0.046), tumor size larger than 5 cm (p = 0.038), and worse survival status during the follow-up (p = 0.036). Multivariate analysis showed that in addition to overall stage, co-overexpression of both proteins adversely affected the overall (hazard ratio, 2.40; p = 0.045) and disease-free survivals (hazard ratio, 2.27; p = 0.029).ConclusionsOverexpression of either COX-2 or mPGES-1 is common but unrelated in NSCLC. Co-overexpression of both COX-2 and mPGES-1 adversely affects postoperative overall and disease-free survivals

    Clinical and genetic characterization of NIPA1 mutations in a Taiwanese cohort with hereditary spastic paraplegia

    No full text
    Abstract Objective NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort. Methods We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene‐based splicing assay, RT‐PCR analysis on the patients' RNA, and cell‐based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression. Results Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3â€Č end of NIPA1 exon 3 near the exon–intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression. Interpretation SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent‐onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy

    Biallelic DDHD2 mutations in patients with adult‐onset complex hereditary spastic paraplegia

    No full text
    Abstract Objective Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by slowly progressive lower limb spasticity and weakness. HSP type 54 (SPG54) is autosomal recessively inherited and caused by mutations in the DDHD2 gene. This study investigated the clinical characteristics and molecular features of DDHD2 mutations in a cohort of Taiwanese patients with HSP. Methods Mutational analysis of DDHD2 was performed for 242 unrelated Taiwanese patients with HSP. The clinical, neuroimaging, and genetic features of the patients with biallelic DDHD2 mutations were characterized. A cell‐based study was performed to assess the effects of the DDHD2 mutations on protein expression. Results SPG54 was diagnosed in three patients. Among them, two patients carried compound heterozygous DDHD2 mutations, p.[R112Q];[Y606*] and p.[R112Q];[p.D660H], and the other one was homozygous for the DDHD2 p.R112Q mutation. DDHD2 p.Y606* is a novel mutation, whereas DDHD2 p.D660H and p.R112Q have been reported in the literature. All three patients manifested adult onset complex HSP with additional cerebellar ataxia, polyneuropathy, or cognitive impairment. Brain proton magnetic resonance spectroscopy revealed an abnormal lipid peak in thalamus of all three patients. In vitro studies demonstrated that all the three DDHD2 mutations were associated with a considerably lower DDHD2 protein level. Interpretation SPG54 was detected in approximately 1.2% (3 of 242) of the Taiwanese HSP cohort. This study expands the known mutational spectrum of DDHD2, provides molecular evidence of the pathogenicity of the DDHD2 mutations, and underlines the importance of considering SPG54 as a potential diagnosis of adult‐onset HSP

    Defective formyl peptide receptor 2/3 and annexin A1 expressions associated with M2a polarization of blood immune cells in patients with chronic obstructive pulmonary disease

    No full text
    Abstract Background Controversy exists in previous studies on macrophage M1/M2 polarization in chronic obstructive pulmonary disease (COPD). We hypothesized that formyl peptide receptor (FPR), a marker of efferocytosis and mediator of M1/M2 polarization, may be involved in the development of COPD. Methods We examined FPR 1/2/3 expressions of blood M1/M2a monocyte, neutrophil, natural killer (NK) cell, NK T cell, T helper (Th) cell, and T cytotoxic (Tc) cell by flowcytometry method in 40 patients with cigarette smoking-related COPD and 16 healthy non-smokers. Serum levels of five FPR ligands were measured by ELISA method. Results The COPD patients had lower M2a percentage and higher percentages of NK, NK T, Th, and Tc cells than the healthy non-smokers. FPR2 expressions on Th/Tc cells, FPR3 expressions of M1, M2a, NK, NK T, Th, and Tc cells, and serum annexin A1 (an endogenous FPR2 ligand) levels were all decreased in the COPD patients as compared with that in the healthy non-smokers. FPR1 expression on neutrophil was increased in the COPD patient with a high MMRC dyspnea scale, while FPR2 expression on neutrophil and annexin A1 were both decreased in the COPD patients with a history of frequent moderate exacerbation (≄ 2 events in the past 1 year). In 10 COPD patients whose blood samples were collected again after 1-year treatment, M2a percentage, FPR3 expressions of M1/NK/Th cells, FPR2 expression on Th cell, and FPR1 expression on neutrophil were all reversed to normal, in parallel with partial improvement in small airway dysfunction. Conclusions Our findings provide evidence for defective FPR2/3 and annexin A1 expressions that, associated with decreased M2a polarization, might be involved in the development of cigarette smoking induced persistent airflow limitation in COPD

    Collagens and collagen-related matrix components in the human and mouse eye

    No full text
    corecore