14 research outputs found

    HDAC6 is a bruchpilot deacetylase that facilitates neurotransmitter release

    Get PDF
    Presynaptic densities are specialized structures involved in synaptic vesicle tethering and neurotransmission; however, the mechanisms regulating their function remain understudied. In Drosophila, Bruchpilot is a major constituent of the presynaptic density that tethers vesicles. Here, we show that HDAC6 is necessary and sufficient for deacetylation of Bruchpilot. HDAC6 expression is also controlled by TDP-43, an RNA-binding protein deregulated in amyotrophic lateral sclerosis (ALS). Animals expressing TDP-43 harboring pathogenic mutations show increased HDAC6 expression, decreased Bruchpilot acetylation, larger vesicle-tethering sites, and increased neurotransmission, defects similar to those seen upon expression of HDAC6 and opposite to hdac6 null mutants. Consequently, reduced levels of HDAC6 or increased levels of ELP3, a Bruchpilot acetyltransferase, rescue the presynaptic density defects in TDP-43-expressing flies as well as the decreased adult locomotion. Our work identifies HDAC6 as a Bruchpilot deacetylase and indicates that regulating acetylation of a presynaptic release-site protein is critical for maintaining normal neurotransmission

    Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase

    Get PDF
    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2 dependent and PPM1H phosphatase reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. Alphafold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.</p

    Drosophila Vps13 Is Required for Protein Homeostasis in the Brain

    Get PDF
    Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A) gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2)P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Findings In 2019, 273 center dot 9 million (95% uncertainty interval 258 center dot 5 to 290 center dot 9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 center dot 72% (4 center dot 46 to 5 center dot 01). 228 center dot 2 million (213 center dot 6 to 244 center dot 7; 83 center dot 29% [82 center dot 15 to 84 center dot 42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global agestandardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 center dot 21% [-1 center dot 26 to -1 center dot 16]), similar progress was not observed for chewing tobacco (0 center dot 46% [0 center dot 13 to 0 center dot 79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 center dot 94% [-1 center dot 72 to -0 center dot 14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Summary Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273 & middot;9 million (95% uncertainty interval 258 & middot;5 to 290 & middot;9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 & middot;72% (4 & middot;46 to 5 & middot;01). 228 & middot;2 million (213 & middot;6 to 244 & middot;7; 83 & middot;29% [82 & middot;15 to 84 & middot;42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global age standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 & middot;21% [-1 & middot;26 to -1 & middot;16]), similar progress was not observed for chewing tobacco (0 & middot;46% [0 & middot;13 to 0 & middot;79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 & middot;94% [-1 & middot;72 to -0 & middot;14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030

    HDAC6 Is a Bruchpilot Deacetylase that Facilitates Neurotransmitter Release

    No full text
    Presynaptic densities are specialized structures involved in synaptic vesicle tethering and neurotransmission; however, the mechanisms regulating their function remain understudied. In Drosophila, Bruchpilot is a major constituent of the presynaptic density that tethers vesicles. Here, we show that HDAC6 is necessary and sufficient for deacetylation of Bruchpilot. HDAC6 expression is also controlled by TDP-43, an RNA-binding protein deregulated in amyotrophic lateral sclerosis (ALS). Animals expressing TDP-43 harboring pathogenic mutations show increased HDAC6 expression, decreased Bruchpilot acetylation, larger vesicle-tethering sites, and increased neurotransmission, defects similar to those seen upon expression of HDAC6 and opposite to hdac6 null mutants. Consequently, reduced levels of HDAC6 or increased levels of ELP3, a Bruchpilot acetyltransferase, rescue the presynaptic density defects in TDP-43-expressing flies as well as the decreased adult locomotion. Our work identifies HDAC6 as a Bruchpilot deacetylase and indicates that regulating acetylation of a presynaptic release-site protein is critical for maintaining normal neurotransmission.publisher: Elsevier articletitle: HDAC6 Is a Bruchpilot Deacetylase that Facilitates Neurotransmitter Release journaltitle: Cell Reports articlelink: http://dx.doi.org/10.1016/j.celrep.2014.05.051 content_type: article copyright: Copyright © 2014 The Authors. Published by Elsevier Inc.status: publishe

    Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility

    Get PDF
    The VPS13A gene is associated with the neurodegenerative disorder Chorea Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased, mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are increased. Our data, together with recently published data from others, indicate that VPS13A is required for establishing membrane contact sites between various organelles to enable lipid transfer required for mitochondria and lipid droplet related processes

    Impaired Vps13 function leads to defects in protein homeostasis.

    No full text
    <p>(A) Percentage of isogenic control and <i>Vps13</i> mutant flies that eclosed at increasing temperatures. (B) Percentage of homozygous <i>Vps13</i> mutant flies and excision line flies that eclosed at 29°C. (C) Percentage of flies of various genotypes that eclosed at 29°C. Two independent deficiency lines (lacking a genomic area containing the <i>Vps13</i> gene) were crossed with <i>Vps13/ CyO</i> heterozygous flies. Eclosion rate of the following genotypes was analyzed: <i>Vps13/+</i>, <i>Df #7535/+</i>, <i>Vps13/Df #7535</i>, <i>Df #7534/+</i> and <i>Vps13/Df #7534</i>. (D) Percentage of <i>Vps13</i> flies that eclosed at 22°C on food with increasing concentrations of L-canavanine. (E) Western blot analysis of lysates of 1 day old control and <i>Vps13</i> mutant fly heads. Ubiquitylated proteins, K48 ubiquitylated proteins and K63 ubiquitylated proteins were detected. All quantifications show the mean and SEM of at least three independent experiments per condition. For statistical analysis a two-tailed students T-test was used in combination with a Welch’s correction if necessary. P<0.05 is *, P<0.01 is ** and P<0.001 is ***.</p

    Central nervous system of larval and adult <i>Vps13</i> mutants contain protein aggregates.

    No full text
    <p>(A) Ventral nerve cords of control, <i>Vps13</i> mutant, <i>Vps13/Df #7534</i> and <i>Vps13/Df #7535</i> third instar larvae were stained for ubiquitylated proteins and DAPI. The presence of DAPI indicates areas where nuclei of neuronal cell bodies or glial cells are located. DAPI negative regions represent areas mainly containing axonal and synaptic structures [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0170106#pone.0170106.ref033" target="_blank">33</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0170106#pone.0170106.ref035" target="_blank">35</a>]. The areas in the grey boxes are shown below as higher magnification images. The scale bar indicates 50 μm. (B) Quantification of the number of ubiquitylated protein puncta in the ventral nerve cord. (C) Staining of 1 day old adult control brains using DAPI. The grey box denotes the area in the brain where the two antennal lobes are located. The presence of DAPI indicates areas where nuclei of neuronal or glial cell bodies are located. The center area which is negative for DAPI contains axons and synaptic structures [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0170106#pone.0170106.ref034" target="_blank">34</a>]. The scale bar indicates 50 μm. (D) Quantification of the number of puncta of ubiquitylated proteins in the antennal lobes derived from 1 day old isogenic controls, <i>Vps13</i> mutants and excision line 3. (E) Staining of brains derived from 1 day old controls, <i>Vps13</i> mutants and excision line 3 flies for ubiquitylated proteins, Ref(2)p and DAPI. The scale bar indicates 20 μm Arrows indicate colocalization of Ref(2)P and Ubiquitin positive foci. All quantifications show the mean and SEM of at least three independent experiments per condition. For statistical analysis a two-tailed students T-test was used in combination with a Welch’s correction if necessary. P<0.05 is *, P<0.01 is ** and P<0.001 is ***.</p

    <i>Vps13</i> mutant flies show a decreased life span, age dependent impairment of locomotor function and neurodegeneration.

    No full text
    <p>(A) Life span analysis of isogenic control and <i>Vps13</i> mutant flies. (B) The fraction of dead flies of total flies used,observed within the indicated time intervals. (C) Life span curve of <i>Vps13</i> mutant flies and three excision lines. (D) Climbing behavior was analyzed by determining the percentage of isogenic control and <i>Vps13</i> mutant flies (4 and 17 days old) able to climb 5 cm against gravity within 15 seconds. Mean and SEM are plotted (n = 5). For statistical analysis a two-tailed students T-test was used. P<0.001 is ***. (E) Fly heads (20 day old) of control and homozygous <i>Vps13</i> mutant flies were fixed, dehydrated and embedded in epon. Sections, visualizing a cross section of the complete brain, were stained with toluidine blue. The scale bar indicates 50 μm.(F) Higher magnification images of the boxed area’s in Fig E. The central complex is denoted with a dotted line. The scale bar indicates 25 μm.</p
    corecore