418 research outputs found
Adiposity impacts cognitive function in Asian populations: an epidemiological and Mendelian Randomization study.
BACKGROUND: Obesity and related metabolic disturbances including diabetes, hypertension and hyperlipidemia predict future cognitive decline. Asia has a high prevalence of both obesity and metabolic disease, potentially amplifying the future burden of dementia in the region. We aimed to investigate the impact of adiposity and metabolic risk on cognitive function in Asian populations, using an epidemiological analysis and a two-sample Mendelian Randomization (MR) study. METHODS: The Health for Life in Singapore (HELIOS) Study is a population-based cohort of South-East-Asian men and women in Singapore, aged 30-84 years. We analyzed 8769 participants with metabolic and cognitive data collected between 2018 and 2021. Whole-body fat mass was quantified with Dual X-Ray Absorptiometry (DEXA). Cognition was assessed using a computerized cognitive battery. An index of general cognition ' g ' was derived through factor analysis. We tested the relationship of fat mass indices and metabolic measures with ' g ' using regression approaches. We then performed inverse-variance-weighted MR of adiposity and metabolic risk factors on ' g ', using summary statistics for genome-wide association studies of BMI, visceral adipose tissue (VAT), waist-hip-ratio (WHR), blood pressure, HDL cholesterol, triglycerides, fasting glucose, HbA1c, and general cognition. FINDINGS: Participants were 58.9% female, and aged 51.4 (11.3) years. In univariate analysis, all 29 adiposity and metabolic measures assessed were associated with ' g ' at P < 0.05. In multivariable analyses, reduced ' g ' was consistently associated with increased visceral fat mass index and lower HDL cholesterol (P < 0.001), but not with blood pressure, triglycerides, or glycemic indices. The reduction in ' g ' associated with 1SD higher visceral fat, or 1SD lower HDL cholesterol, was equivalent to a 0.7 and 0.9-year increase in chronological age respectively (P < 0.001). Inverse variance MR analyses showed that reduced ' g ' is associated with genetically determined elevation of VAT, BMI and WHR (all P < 0.001). In contrast, MR did not support a causal role for blood pressure, lipid, or glycemic indices on cognition. INTERPRETATION: We show an independent relationship between adiposity and cognition in a multi-ethnic Asian population. MR analyses suggest that both visceral adiposity and raised BMI are likely to be causally linked to cognition. Our findings have important implications for preservation of cognitive health, including further motivation for action to reverse the rising burden of obesity in the Asia-Pacific region. FUNDING: The Nanyang Technological University-the Lee Kong Chian School of Medicine, National Healthcare Group, National Medical Research Council, Ministry of Education, Singapore
Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore
Dengue illness is a tropical disease transmitted by mosquitoes that threatens more than one third of the worldwide population. Dengue has important economic consequences because of the burden to hospitals, work absenteeism and risk of death of symptomatic cases. Governments attempt to reduce the disease burden using costly mosquito control strategies such as habitat reduction and spraying insecticide. Despite such efforts, the number of cases remains high. Dengue vaccines are expected to be available in the near future and there is an urgent need to evaluate their cost-effectiveness, i.e. whether their cost will be justified by the reduction in disease burden they bring. For such an evaluation, we estimated the economic impacts of dengue in Singapore and the expected vaccine costs for different prices. In this way we estimated price thresholds for which vaccination is not cost-effective. This research provides useful estimates that will contribute to informed decisions regarding the adoption of dengue vaccination programs
Molecular Characterization, Tissue Distribution, Subcellular Localization and Actin-Sequestering Function of a Thymosin Protein from Silkworm
We identified a novel gene encoding a Bombyx mori thymosin (BmTHY) protein from a cDNA library of silkworm pupae, which has an open reading frame (ORF) of 399 bp encoding 132 amino acids. It was found by bioinformatics that BmTHY gene consisted of three exons and two introns and BmTHY was highly homologous to thymosin betas (Tβ). BmTHY has a conserved motif LKHTET with only one amino acid difference from LKKTET, which is involved in Tβ binding to actin. A His-tagged BmTHY fusion protein (rBmTHY) with a molecular weight of approximately 18.4 kDa was expressed and purified to homogeneity. The purified fusion protein was used to produce anti-rBmTHY polyclonal antibodies in a New Zealand rabbit. Subcellular localization revealed that BmTHY can be found in both Bm5 cell (a silkworm ovary cell line) nucleus and cytoplasm but is primarily located in the nucleus. Western blotting and real-time RT-PCR showed that during silkworm developmental stages, BmTHY expression levels are highest in moth, followed by instar larvae, and are lowest in pupa and egg. BmTHY mRNA was universally distributed in most of fifth-instar larvae tissues (except testis). However, BmTHY was expressed in the head, ovary and epidermis during the larvae stage. BmTHY formed complexes with actin monomer, inhibited actin polymerization and cross-linked to actin. All the results indicated BmTHY might be an actin-sequestering protein and participate in silkworm development
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Epidemiological risk factors for adult dengue in Singapore: an 8-year nested test negative case control study
10.1186/s12879-016-1662-4BMC Infectious Diseases16132
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
- …