1,281 research outputs found
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Charge photogeneration in few-layer MoS2
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is
expected to have a significant exciton binding energy of several 100 meV,
leading to the consensus that excitons are the primary photoexcited species.
Nevertheless, even single layers show a strong photovoltaic effect and work as
the active material in high sensitivity photodetectors, thus indicating
efficient charge carrier photogeneration (CPG). Here we use continuous wave
photomodulation spectroscopy to identify the optical signature of long-lived
charge carriers and femtosecond pump-probe spectroscopy to follow the CPG
dynamics. We find that intitial photoexcitation yields a branching between
excitons and charge carriers, followed by excitation energy dependent hot
exciton dissociation as an additional CPG mechanism. Based on these findings,
we make simple suggestions for the design of more efficient MoS2 photovoltaic
and photodetector devices
QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms
Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017
Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo
Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA.
Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs were studied. Separate groups of 12 animals were killed at age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids.
Results: Severity of OA increased progressively in guinea pigs with age. Glycated, oxidized, and nitrated amino acids were increased markedly at week 36, with glucosepane and dityrosine increasing progressively from weeks 20 and 28, respectively. Glucosepane correlated positively with OA histological severity (r = 0.58, p < 0.0001) and instantaneous modulus (r = 0.52–0.56; p < 0.0001), oxidation free adducts correlated positively with OA severity (p < 0.0009–0.0062), and hydroxyproline correlated positively with cartilage thickness (p < 0.0003–0.003). Interleukin-1β increased the release of glycated and nitrated amino acids from chondrocytes in vitro. In clinical translation, plasma glucosepane was increased 38% in early-stage OA (p < 0.05) and sixfold in patients with advanced OA (p < 0.001) compared with healthy controls.
Conclusions: These studies further advance the prospective role of glycated, oxidized, and nitrated amino acids as serum biomarkers in diagnostic algorithms for early-stage detection of OA and other arthritic disease. Plasma glucosepane, reported here for the first time to our knowledge, may improve early-stage diagnosis and progression of clinical OA
Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
This paper firstly presents old photo modernization using multiple references
by performing stylization and enhancement in a unified manner. In order to
modernize old photos, we propose a novel multi-reference-based old photo
modernization (MROPM) framework consisting of a network MROPM-Net and a novel
synthetic data generation scheme. MROPM-Net stylizes old photos using multiple
references via photorealistic style transfer (PST) and further enhances the
results to produce modern-looking images. Meanwhile, the synthetic data
generation scheme trains the network to effectively utilize multiple references
to perform modernization. To evaluate the performance, we propose a new old
photos benchmark dataset (CHD) consisting of diverse natural indoor and outdoor
scenes. Extensive experiments show that the proposed method outperforms other
baselines in performing modernization on real old photos, even though no old
photos were used during training. Moreover, our method can appropriately select
styles from multiple references for each semantic region in the old photo to
further improve the modernization performance.Comment: Accepted to CVPR 2023. Website:
https://kaist-viclab.github.io/old-photo-modernizatio
Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model.
Demyelinating disorders such as leukodystrophies and multiple sclerosis are neurodegenerative diseases characterized by the progressive loss of myelin that may lead toward a chronic demyelination of the brain¿s white matter, impairing normal axonal conduction velocity and ultimately causing neurodegeneration. Current treatments modifying the pathological mechanisms are capable of ameliorating the disease; however, frequently, these therapies are not sufficient to repress the progressive demyelination into a chronic condition and permanent loss of function. To this end, we analyzed the effect that bone marrowderived mesenchymal stromal cell (BM-MSC) grafts exert in a chronically demyelinated mouse brain. As a result, oligodendrocyte progenitors were recruited surrounding the graft due to the expression of various trophic signals by the grafted MSCs. Although there was no significant reaction in the non-grafted side, in the grafted regions oligodendrocyte progenitors were detected. These progenitors were derived from the nearby tissue as well as from the neurogenic niches, including the subependymal zone and dentate gyrus. Once near the graft site, the cells matured to myelinating oligodendrocytes. Finally, electrophysiological studies demonstrated that axonal conduction velocity was significantly increased in the grafted side of the fimbria. In conclusion, we demonstrate here that in chronic demyelinated white matter, BM-MSC transplantation activates oligodendrocyte progenitors and induces remyelination in the tissue surrounding the stem cell graft
Viral determinants and vector competence of Zika Virus transmission
Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies
Role of genetic polymorphisms in tumour angiogenesis
Angiogenesis plays a crucial role in the development, growth and spread of solid tumours. Pro- and anti-angiogenic factors are abnormally expressed in tumours, influencing tumour angiogenesis, growth and progression. Polymorphisms in genes encoding angiogenic factors or their receptors may alter protein expression and/or activity. This article reviews the literature to determine the possible role of angiogenesis-related polymorphisms in cancer. Further research studies in this potentially crucial area of tumour biology are proposed
Antigen-binding Characteristics of Circulating IgG Autoantibodies to Cytokeratin 18 Protein in Patients with Nonallergic Asthma
Cytokeratin 18 (CK18) protein was identified as an airway epithelial cell autoantigen associated with nonallergic asthma. Cleavage of CK18 protein by caspase-3 is a marker of early apoptosis in epithelial cells. It has been shown that the expression of active caspase-3 was increased in bronchial epithelial cells of asthmatic patients, when compared with healthy controls. To investigate the antigen-binding characteristics of IgG autoantibodies to CK18 protein in nonallergic asthma, the bindings of IgG autoantibodies to the fragments of CK18 protein cleaved by caspase-3 were analyzed by Western blot using serum samples from three patients with nonallergic asthma. Recombinant human CK18 protein was treated by caspase-3 and cleaved into N-terminal fragment (1-397 amino acids) and C-terminal fragment (398-430 amino acids). The binding capacity of IgG autoantibodies to N-terminal fragment of CK18 was maintained in one patient and reduced in other two patients. IgG autoantibodies from all three patients did not bind to C-terminal fragment of CK18. In conclusion, IgG autoantibodies to CK18 protein from patients with nonallergic asthma seems to preferentially bind to the whole molecule of CK18 protein and their antigen-binding characteristics were heterogeneous among the patients with nonallergic asthma
- …
