42 research outputs found

    Young Brown Dwarfs in the Core of the W3 Main Star-Forming Region

    Get PDF
    We present the results of deep and high-resolution (FWHM ~ 0".35) JHK NIR observations with the Subaru telescope, to search for very low mass young stellar objects (YSOs) in the W3 Main star-forming region. The NIR survey covers an area of ~ 2.6 arcmin^2 with 10-sigma limiting magnitude exceeding 20 mag in the JHK bands. The survey is sensitive enough to provide unprecedented details in W3 IRS 5 region and reveals a census of the stellar population down to objects below the hydrogen-burning limit. We construct JHK color-color (CC) and J-H/J and H-K/K color-magnitude (CM) diagrams to identify very low luminosity YSOs and to estimate their masses. Based on these CC and CM diagrams, we identified a rich population of embedded YSO candidates with infrared excesses (Class I and Class II), associated with the W3 Main region. A large number of red sources (H-K > 2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence (PMS) stars with intrinsic color excesses. Based on the comparison between theoretical evolutionary models of very low-mass PMS objects with the observed CM diagram, we find there exists a substantial substellar population in the observed region. The mass function (MF) does not show the presence of cutoff and sharp turnover around the substellar limit, at least at the hydrogen-burning limit. Furthermore, the MF slope indicates that the number ratio of young brown dwarfs and hydrogen-burning stars in the W3 Main is probably higher than those in Trapezium and IC 348. The presence of mass segregation, in the sense that relatively massive YSOs lie near the cluster center, is seen. The estimated dynamical evolution time indicates that the observed mass segregation in the W3 Main may be the imprint of the star formation process.Comment: 39 pages, 15 figures. Accepted for publication in the Astrophysical Journa

    Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur

    Get PDF
    We present a near-infrared image of UY Aur, a 0.9" separated binary system, using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope. Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the full width at half maximum of the point spread function, the highest achieved. By comparison with previous measurements, we estimated that the orbital period is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed H-band magnitude of the secondary varies by as much as 1.3 mag within a decade, while that of the primary is rather stable. This inconstancy may arise from photospheric variability caused by an uneven accretion rate or from the rotation of the secondary. We detected a half-ring shaped circumbinary disk around the binary with a bright southwest part but a barely detectable northeast portion. The brightness ratio is ~57. Its inner radius and inclination are about 520 AU and 42, respectively. The disk is not uniform but has remarkable features, including a clumpy structure along the disk, circumstellar material inside the inner cavity, and an extended armlike structure. The circumstellar material inside the cavity probably corresponds to a clump or material accreting from the disk onto the binary. The armlike structure is a part of the disk, created by the accretion from the outer region of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A

    The stellar content of the young open cluster Trumpler 37

    Get PDF
    With an apparent cluster diameter of 1.5{\deg} and an age of ~4 Myr, Trumpler 37 is an ideal target for photometric monitoring of young stars as well as for the search of planetary transits, eclipsing binaries and other sources of variability. The YETI consortium has monitored Trumpler 37 throughout 2010 and 2011 to obtain a comprehensive view of variable phenomena in this region. In this first paper we present the cluster properties and membership determination as derived from an extensive investigation of the literature. We also compared the coordinate list to some YETI images. For 1872 stars we found literature data. Among them 774 have high probability of being member and 125 a medium probability. Based on infrared data we re-calculate a cluster extinction of 0.9-1.2 mag. We can confirm the age and distance to be 3-5 Myr and ~870 pc. Stellar masses are determined from theoretical models and the mass function is fitted with a power-law index of alpha=1.90 (0.1-0.4 M_sun) and alpha=1.12 (1-10 M_sun).Comment: 9 pages, 10 figures, 2 long tables, accepte

    The brown dwarf population in the Chamaeleon I cloud

    Get PDF
    We present the results of a multiband survey for brown dwarfs in the Chamaeleon I dark cloud with the Wide Field Imager (WFI) camera at the ESO/MPG 2.2-m telescope on La Silla (Chile). The survey has revealed a substantial population of brown dwarfs in this southern star forming region. Candidates were selected from R, I and H-alpha imaging observations. We also observed in two medium-band filters, M855 and M915, for the purpose of spectral type determination. The former filter covers a wavelength range containing spectral features characteristic of M-dwarfs, while the latter lies in a relatively featureless wavelength region for these late-type objects. A correlation was found between spectral type and (M855-M915) colour index for mid- to late M-type objects and early L-type dwarfs. With this method, we identify most of our object candidates as being of spectral type M5 or later. Our results show that there is no strong drop in the number of objects for the latest spectral types, hence brown dwarfs may be as abundant as low-mass stars in this region. Also, both kind of objects have a similar spatial distribution. We derive an index α=0.6±0.1\alpha = 0.6 \pm 0.1 of the mass function in this region of dispersed star formation, in good agreement with the values obtained in other star forming regions and young clusters. Some of the brown dwarfs have strong H-alpha emission, suggesting mass accretion. For objects with published infrared photometry, we find that strong H-alpha emission is related to a mid-infrared excess, indicative of the existence of a circumstellar disk.Comment: Accepted for publication in Astronomy & Astrophysic

    The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects

    Full text link
    We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the cluster centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.Comment: Accepted for publication in A&A (12/04/2007). It has not been edited for language ye

    High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Full text link
    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1 (14 AU). It is inclined by 46 \pm 2 degree as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micron meter is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.Comment: 20 pages, 8 figures, and 1 table. accepted to PAS

    A Young Brown Dwarf Companion to DH Tauri

    Get PDF
    We present the detection of a young brown dwarf companion DH Tau B associated with the classical T Tauri star DH Tau. Near-infrared coronagraphic observations with CIAO on the Subaru Telescope have revealed DH Tau B with H = \~15 mag located at 2.3" (330 AU) away from the primary DH Tau A. Comparing its position with a Hubble Space Telescope archive image, we confirmed that DH Tau A and B share the common proper motion, suggesting that they are physically associated with each other. The near-infrared color of DH Tau B is consistent with those of young stellar objects. The near-infrared spectra of DH Tau B show deep water absorption bands, a strong K I absorption line, and a moderate Na I absorption line. We derived its effective temperature and surface gravity of Teff = 2700 -- 2800 K and log g = 4.0--4.5, respectively, by comparing the observed spectra with synthesized spectra of low-mass objects. The location of DH Tau B on the HR diagram gives its mass of 30 -- 50 M_Jupiter.Comment: 10 pages, 14 figures, 1 table, accepted for publication in Ap
    corecore