3,928 research outputs found

    Bose-Einstein Condensation of 88^{88}Sr Through Sympathetic Cooling with 87^{87}Sr

    Get PDF
    We report Bose-Einstein condensation of 88^{88}Sr, which has a small, negative s-wave scattering length (a88=2a_{88}=-2\,a0a_0). We overcome the poor evaporative cooling characteristics of this isotope by sympathetic cooling with 87^{87}Sr atoms. 87^{87}Sr is effective in this role in spite of the fact that it is a fermion because of the large ground state degeneracy arising from a nuclear spin of I=9/2I=9/2, which reduces the impact of Pauli blocking of collisions. We observe a limited number of atoms in the condensate (Nmax104N_{max}\approx 10^4) that is consistent with the value of a88a_{88} and the optical dipole trap parameters.Comment: 4 pages, 4 figure

    Degenerate Fermi Gas of 87^{87}Sr

    Get PDF
    We report quantum degeneracy in a gas of ultra-cold fermionic 87^{87}Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5\,s, we obtain samples well into the degenerate regime with T/TF=0.26.06+.05T/T_F=0.26^{+.05}_{-.06}. The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/TF0.5T/T_F \sim 0.5.Comment: 4 pages, 3 figure

    Inelastic and elastic collision rates for triplet states of ultracold strontium

    Get PDF
    We report measurement of the inelastic and elastic collision rates for ^{88}Sr atoms in the (5s5p)^3P_0 state in a crossed-beam optical dipole trap. This is the first measurement of ultracold collision properties of a ^3P_0 level in an alkaline-earth atom or atom with similar electronic structure. Since the (5s5p)^3P_0 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p){^3P_2} state.Comment: 4 pages 5 figure

    Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2 - (5s4d)3D2 transition

    Full text link
    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2 - (5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr, and 88Sr improves the value of the (5s5p)3P2 - (5s4d)3D2 transition frequency for 88Sr and determines the isotope shifts for the transition.Comment: 4 pages, 5 figure

    Two-photon photoassociative spectroscopy of ultracold 88-Sr

    Get PDF
    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X1Σg+^1\Sigma_g^+ state of the 88^{88}Sr2_2 dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, a88=1.4(6)a0a_{88}=-1.4(6) a_0. For the intermediate state, we use a bound level on the metastable 1S0^1S_0-3P1^3P_1 potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.Comment: 9 pages, 9 figure

    Bose-Einstein Condensation of 84Sr

    Get PDF
    We report Bose-Einstein condensation of Sr84 in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N0∼3×105) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images

    Numerical modeling of collisional dynamics of Sr in an optical dipole trap

    Get PDF
    We describe a model of inelastic and elastic collisional dynamics of atoms in an optical dipole trap that utilizes numerical evaluation of statistical mechanical quantities and numerical solution of equations for the evolution of number and temperature of trapped atoms. It can be used for traps that possess little spatial symmetry and when the ratio of trap depth to sample temperature is relatively small. We compare simulation results with experiments on Sr88 and Sr84, which have well-characterized collisional properties

    An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

    Get PDF
    The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry to SU(N>2), which is closely related to systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal an important difference between the cases of SU(6) and SU(2) in the achievable temperature as the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N) Hubbard system at extremely low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore