280 research outputs found

    Echocardiogrhphic assessment of the effect of type (2) Diabetes mellitus on cardiac performance

    Get PDF
    Background: Diabetes mellitus (DM) causes damaging effects on the cardiac function; these effects can be observed on the diastolic performance of the heart reflected on the change in transmitral blood velocity, the cardiac wall and septum thickness. Objectives: The present study was to assess the diastolic and systolic cardiac muscle performance for patients with type 2 diabetes mellitus compared with control individuals and to evaluate the index of myocardial performance. Patients and Methods: The study involved 97 patients (35 male and 62 female of average age of 56.2 ±10.755) of type 2 diabetes mellitus (DM), they were investigated for their left ventricle performance and compared with 51 normal individuals “the control group” (20 male and 31 female of average age of 41.4 ± 13.196). Measurements of isovolumetric contraction time IVCT, ejection time ET, ejection fraction EF%, isovolumetric relaxation time IVRT, the early and late peak velocities E and A of transmitral flow, left ventricle diameter in diastole and systole LVIDs, LVIDs, posterior wall thickness PWTd, and Interventricular septum thickness in diastole IVSTd were measured, and index of myocardial performance IMP was calculated. Results: Results reveal differences in these parameters for patients group relative to controls, in IVRT, ET, E, A, E/A, EF%, IMP, LVIDs, PWTd and IVSTd all are strongly significant with p value <0.001and for FS% p value = 0.0029 except for IVCT the change was 9.342% with p value 0.188 and the change in LVIDd -3.586%, p value 0.052 were not significant. Conclusion: Diabetes mellitus can cause a deleterious effect on the myocardium. The effect causes impairment in the cardiac diastolic performance and muscle contractility caused by the damage inflicted by hyperglycemia (high blood sugar). Also results show that IMP is increased in type 2 DM patients. This increase may be an early sign of diabetic cardiomyopathy in diabetic patients

    DyeVert™ PLUS EZ System for Preventing Contrast-Induced Acute Kidney Injury in Patients Undergoing Diagnostic Coronary Angiography and/or Percutaneous Coronary Intervention: A UK-Based Cost–Utility Analysis

    Get PDF
    Background: Contrast-induced acute kidney injury (CI-AKI) is a complication commonly associated with invasive angiographic procedures and is considered the leading cause of hospital-acquired acute kidney injury. CI-AKI can lead to a prolonged hospital stay, with a substantial economic impact, and increased mortality. The DyeVert™ PLUS EZ system (FDA approved and CE marked) is a device that has been developed to divert a portion of the theoretical injected contrast media volume (CMV), reducing the overall volume of contrast media injected and aortic reflux, and potentially improving long-term health outcomes. Objectives: To assess the long-term costs and health outcomes associated with the introduction of the DyeVert™ PLUS EZ system into the UK health care service for the prevention of CI-AKI in a cohort of patients with chronic kidney disease (CKD) stage 3–4 undergoing diagnostic coronary angiography (DAG) and/or percutaneous coronary intervention (PCI), and to compare these costs and outcomes with those of the current practice. Methods: A de novo economic model was developed based on the current pathway of managing patients undergoing DAG and/or PCI and on evidence related to the clinical effectiveness of DyeVert™ in terms of its impact on relevant clinical outcomes and health service resource use. Clinical data used to populate the model were derived from the literature or were based on assumptions informed by expert clinical input. Costs included in the model were from the NHS and personal social services perspective and obtained from the literature and UK-based routine sources. Probabilistic distributions were assigned to the majority of model parameters so that a probabilistic analysis could be undertaken, while deterministic sensitivity analyses were also carried out to explore the impact of key parameter variation on the model results. Results: Base-case results indicate that the intervention leads to cost savings (− £435) and improved effectiveness (+ 0.028 QALYs) over the patient’s lifetime compared with current practice. Output from the probabilistic analysis points to a high likelihood of the intervention being cost-effective across presented willingness-to-pay (WTP) thresholds. The overall long-term cost saving for the NHS associated with the introduction of the DyeVert™ PLUS EZ system is over £19.7 million for each annual cohort of patients. The cost savings are mainly driven by a lower risk of subsequent diseases and their associated costs. Conclusions: The introduction of the DyeVert™ PLUS EZ system has the potential to reduce costs for the health care service and yield improved clinical outcomes for patients with CKD stage 3–4 undergoing angiographic procedures

    Angiotensin II Requires Zinc and Downregulation of the Zinc Transporters ZnT3 and ZnT10 to Induce Senescence of Vascular Smooth Muscle Cells

    Get PDF
    Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells

    Erythropoietin in the intensive care unit: beyond treatment of anemia

    Get PDF
    Erythropoietin (EPO) is the major hormone stimulating the production and differentiation of red blood cells. EPO is used widely for treating anemia of critical illness or anemia induced by chemotherapy. EPO at pharmacological doses is used in this setting to raise hemoglobin levels (by preventing the apoptosis of erythroid progenitor cells) and is designed to reduce patient exposure to allogenic blood through transfusions. Stroke, heart failure, and acute kidney injury are a frequently encountered clinical problem. Unfortunately, in the intensive care unit advances in supportive interventions have done little to reduce the high mortality associated with these conditions. Tissue protection with EPO at high, nonpharmacological doses after injury has been found in the brain, heart, and kidney of several animal models. It is now well known that EPO has anti-apoptotic effects in cells other than erythroid progenitor cells, which is considered to be independent of EPOs erythropoietic activities. This review article summarizes what is known in preclinical models of critical illness and discusses why this does not correlate with randomized, controlled clinical trials

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS

    Get PDF
    Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of antioxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the antiproliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation

    ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE

    Get PDF
    Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
    corecore