226 research outputs found

    Early investigation on cryopreservation of Dendrobium sonia-28 using encapsulation-dehydration with modified Evan blue assay

    Get PDF
    This study was conducted to determine the potential of cryostoring and regenerating Dendrobium sonia-28 protocorm-like bodies (PLBs) using the encapsulation-dehydration technique. The parameters tested for this study included the PLB size range (1 to 2 and 3 to 4 mm), preculture using six different sucrose concentrations (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 M) and encapsulation using three different sodium alginate concentrations (2.5, 3.0 and 3.5%). Based on initial trials, 1 to 2 mm PLBs that were precultured in 1.0 M sucrose were selected for further studies as they produced the best viability as indicated by the Evans blue (EB) staining method. Subsequently, the PLBs were subjected to a 30 min encapsulation experiment involving the three sodium alginate concentrations. Finally, the chlorophyll content and total soluble protein of cryopreserved, non-cryopreserved and untreated PLBs were determined.Key words: Orchid, protocorm-like bodies, cryopreservation

    A pilot study on the isolation and biochemical characterization of Pseudomonas from chemical intensive rice ecosystem

    Get PDF
    In recent times, there has been a renewed interest in the search of plant growth promoting rhizobacteria (PGPR) for sustainable crop production. Rice is an economically important food crop, which is subjected to infection by a host of fungal, viral and bacterial pathogens. In this study, an attempt was made to isolate Pseudomonas spp., a potent PGPR in the rhizosphere. Through appropriate microbiological and biochemical methods, the study demonstrated the presence of fluorescent and nonfluorescent Pseudomonads in the rhizosphere of chemical intensive rice growing environments. Augmentation of such PGPR including, Pseudomonads in the rice ecosystems will ensure a healthy micro climate for rice.Key words: Pseudomonas, rice, plant growth promoting rhizobacteria (PGPR)

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    Applications of Polynomial Chaos-Based Cokriging to Aerodynamic Design Optimization Benchmark Problems

    Get PDF
    In this work, the polynomial chaos-based Cokriging (PC-Cokriging) is applied to a benchmark aerodynamic design optimization problem. The aim is to perform fast design optimization using this multifidelity metamodel. Multifidelity metamodels use information at multiple levels of fidelity to make accurate and fast predictions. Higher amount of lower fidelity data can provide important information on the trends to a limited amount of high-fidelity (HF) data. The PC-Cokriging metamodel is a multivariate version of the polynomial chaos-based Kriging (PC-Kriging) metamodel and its construction is similar to Cokriging. It combines the advantages of the interpolation-based Kriging metamodel and the regression-based polynomial chaos expansions (PCE). In the work the PC-Cokriging model is compared to other metamodels namely PCE, Kriging, PC-Kriging and Cokriging. These metamodel are first compared in terms of global accuracy, measured by root mean squared error (RMSE) and normalized RMSE (NRMSE) for different sample sets, each with an increasing number of HF samples. These metamodels are then used to find the optimum. Once the optimum design is found computational fluid dynamics (CFD) simulations are rerun and the results are compared to each other. In this study a drag reduction of 73.1 counts was achieved. The multifidelity metamodels required 19 HF samples along with 1,055 low-fidelity to converge to the optimum drag value of 129 counts, while the single fidelity models required 155 HF samples to do the same

    A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale

    Get PDF
    Material properties such as hardness can be dependent on the size of the indentation load when that load is small, a phenomenon known as the indentation size effect (ISE). In this work an inverse finite element method (IFEM) is used to investigate the ISE, with reference to experiments with a Berkovich indenter and an aluminium test material. It was found that the yield stress is highly dependent on indentation depth and in order to simulate this, an elastoplastic constitutive relation in which yielding varies with indentation depth/load was developed. It is shown that whereas Young's modulus and Poisson's ratio are not influenced by the length scale over the range tested, the amplitude portion of yield stress, which is independent of hardening and corresponds to the initial stress for a bulk material, changes radically at small indentation depths. Using the proposed material model and material parameters extracted using IFEM, the indentation depth-time and load-depth plots can be predicted at different loads with excellent agreement to experiment; the relative residual achieved between FE modelling displacement and experiment being less than 0.32%. An improved method of determining hardness from nanoindentation test data is also presented, which shows goof agreement with that determined using the IFEM

    Modulation of host cell processes by T3SS effectors

    Get PDF
    Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence

    Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

    Get PDF
    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p<00001), age 70 years or older versus younger than 70 years (230 [165-322], p<00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p<00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore