415 research outputs found

    INFLUENCIA DE LOS FACTORES AMBIENTALES SOBRE LA ACTIVIDAD DIARIA DE RECOLECCIÓN DE LA HORMIGA CATAGLYPHIS IBERICA (EM.) (HYM.: FORMICIDAE)

    Get PDF
    Daily foraging activity of the desert ant Cataglyphis iberica and its relationship with some environmental factors (ground temperature at different levels, air temperature, relative humidity, light intensity) were studied in Bellaterra (Barcelona, NE Spain) during the summer of 1983. This is a strictly diurnal and highly thermophilic species: ground surface temperature is the environmental factor that is best correlated with foraging activity (R = 0.727), and greatest activity takes place at midday, when the temperature is maximum. This species, which nests in and zones, begins foraging activity when the outside temperature rises above 30 ºC, while the upper thermal limit has not been found at the study site (where the highest temperature registered was 51 ºC). Light intensity also influences C. iberica foraging activity, and its effect seems to be greatest in the hottest days. Rain stops the exits of foragers completely. Two multiple regression equations (the first one with al1 summer data and the other only with data of the hottest days) have been obtained in order to describe foraging activity of the species as a function of environmental factors. Ground surface temperature and light intensity are included in both equations, but their relative irnportance is different in each one of them.Se ha estudiado el ritmo diario de actividad de recolección de la hormiga Cataglyphis iberica en relación con los factores ambientales (temperaturas a diferentes niveles, humedad relativa e iluminación). Esta especie tiene una actividad exclusivamente diurna y es marcadamente termófila: la temperatura del suelo al sol es el factor ambiental mejor correlacionado con la actividad recolectora (R = 0.7273), la máxima actividad (y también el mayor aporte de presas) se da a mediodía, coincidiendo con las máximas temperaturas. Esta hormiga, que nidifica en zonas áridas, es activa a partir de los 30 "C de temperatura del suelo al sol, sin que en la zona de estudio (Bellaterra, Barcelona) se haya observado una temperatura superior que limite su actividad (se han alcanzado los 51 "C). La iluminación también influye en la actividad de C. iberica, siendo mayor la correlación entre actividad-iluminación los días de verano con las temperaturas más altas (R = 0.793). La lluvia detiene por completo las salidas recolectoras de las obreras de la especie. Se han elaborado dos ecuaciones de regresión múltiple de la actividad de C. iberica en función de los factores ambientales, una con todos los datos del verano y la otra sólo con los nueve días más calurosos. Temperatura del suelo al sol e iluminación son los dos parámetros que entran en ambas ecuaciones, aunque su importancia relativa varía en cada una de ellas

    Differences in behavioural traits among native and introduced colonies of an invasive ant

    Get PDF
    Identifying the factors that promote the success of biological invasions is a key pursuit in ecology. To date, the link between animal personality and invasiveness has rarely been studied. Here, we examined in the laboratory how Argentine ant populations from the species' native and introduced ranges differed in a suite of behaviours related to species interactions and the use of space. We found correlations among specific behavioural traits that defined an explorative-aggressive syndrome. The Main "European" supercolony (introduced range) more readily explored novel environments, displayed more aggression, detected food resources more quickly, and occupied more space than the Catalonian supercolony (introduced range) and two other Argentine supercolonies (native range). The two native supercolonies also differed in their personalities; one harbouring the less invasive personality, while the other is intermediate between the two introduced supercolonies. Therefore, instead of a binary pattern, Argentine ant supercolonies display a behavioural continuum that is independent on their geographic origin (native/introduced ranges). Our results also suggest that variability in personality traits is correlated to differences in the ecological success of Argentine ant colonies. Differences in group personalities may facilitate the persistence and invasion of animals under novel selective pressures by promoting adaptive behaviours. We stress that the concept of animal personality should be taken into account when elucidating the mechanisms of invasiveness

    Binding of Brucella protein, Bp26, to select extracellular matrix molecules

    Get PDF
    Background: Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). Results: ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. Conclusions: Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis

    Inter-specific aggression generates ant mosaics in canopies of primary tropical rainforest

    Get PDF
    The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.publishedVersio

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    How variation in head pitch could affect image matching algorithms for ant navigation

    Get PDF
    Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant’s visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance

    Migration control: A distance compensation strategy in ants

    Get PDF
    ©The Author(s) 2016. This article is published with open access at Springerlink.com. Migratory behaviour forms an intrinsic part of the life histories of many organisms but is often a high-risk process. Consequently, varied strategies have evolved to negate such risks, but empirical data relating to their functioning are limited. In this study, we use the model system of the househunting ant Temnothorax albipennis to demonstrate a key strategy that can shorten migration exposure times in a group of social insects. Colonies of these ants frequently migrate to new nest sites, and due to the nature of their habitat, the distances over which they do so are variable, leading to fluctuating potential costs dependent on migration parameters. We show that colonies of this species facultatively alter the dynamics of a migration and so compensate for the distance over which a given migration occurs. Specifically, they achieve this by modulating the rate of ‘tandem running’, in which workers teach each other the route to a new nest site. Using this method, colonies are able to engage a larger number of individuals in the migration process when the distance to be traversed is greater, and furthermore, the system appears to be based on perceived encounter rate at the individual level. This form of decentralised control highlights the adaptive nature of a behaviour of ecological importance, and indicates that the key to its robustness lies in the use of simple rules. Additionally, our results suggest that such coordinated group reactions are central to achieving the high levels of ecological success seen in many eusocial organisms

    Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    Get PDF
    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest.We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2% of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1% of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63% (5/7; Camponotus sp. 1) to 0% (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that anttermite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs

    Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection

    Get PDF
    To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections
    corecore