48 research outputs found

    First results from the VIRIAL survey: the stellar content of UVJUVJ-selected quiescent galaxies at 1.5<z<21.5 < z < 2 from KMOS

    Get PDF
    We investigate the stellar populations of 25 massive, galaxies (log[M/M]10.9\log[M_\ast/M_\odot] \geq 10.9) at 1.5<z<21.5 < z < 2 using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is zˉ=1.75\bar{z} = 1.75, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the GG band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of 1.030.08+0.131.03^{+0.13}_{-0.08} Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of 1.220.19+0.561.22^{+0.56}_{-0.19} Gyr and 0.850.05+0.080.85^{+0.08}_{-0.05} Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at 0.2<z<20.2 < z < 2 we find evidence for a 232-3 Gyr spread in the formation epoch of massive galaxies. At z<1z < 1 the measured stellar ages are consistent with passive evolution, while at 1<z21 < z \lesssim2 they appear to saturate at \sim1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for "normal" star-forming galaxies, we show that the timescales required to form massive galaxies at z1.5z \gtrsim 1.5 are consistent with the enhanced α\alpha-element abundances found in massive local early-type galaxies.Comment: 6 pages, 5 figures, accepted for publication in ApJ

    Structural Evolution of Early-type Galaxies to z=2.5 in CANDELS

    Get PDF
    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1<z<2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z>1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a~0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z>1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and - at a given mass - on redshift. For present-day and z<1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z>1 this trend is much weaker over the mass range explored here (10^10<M*/M_sun<10^11), because the oblate fraction among massive (M*~10^11 M_sun) was much higher in the past: 0.59+-0.10 at z>1, compared to 0.20+-0.02 at z~0.1. In contrast, the oblate fraction among low-mass early-type galaxies (log(M*/M_sun)1 to 0.72+-0.06 at z=0. [Abridged]Comment: accepted for publication in ApJ; 14 pages; 10 figures; 4 table

    The Kinematics of Massive Quiescent Galaxies at 1.4 &lt; z &lt;2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies

    Get PDF
    We study the dynamical properties of massive quiescent galaxies at 1.4 DM[e]. Comparing our high-redshift sample to their likely descendants at low redshift, we find that f DM[e] has increased by a factor of more than 4 since z ≈ 1.8, from f DM[e] = 6.6% ± 1.0% to ~24%. The observed increase appears robust to changes in the methods used to estimate dynamical masses or match progenitors and descendants. We quantify possible variation of the stellar IMF through the offset parameter α, defined as the ratio of dynamical mass in stars to the stellar mass estimated using a Chabrier IMF. We demonstrate that the correlation between stellar velocity dispersion and α reported among quiescent galaxies at low redshift is already in place at z = 2, and we argue that subsequent evolution through (mostly minor) merging should act to preserve this relation while contributing significantly to galaxies' overall growth in size and stellar mass

    A Critical Assessment of Stellar Mass Measurement Methods

    Get PDF
    In this paper we perform a comprehensive study of the main sources of random and systematic errors in stellar mass measurement for galaxies using their Spectral Energy Distributions (SEDs). We use mock galaxy catalogs with simulated multi-waveband photometry (from U-band to mid-infrared) and known redshift, stellar mass, age and extinction for individual galaxies. Given different parameters affecting stellar mass measurement (photometric S/N ratios, SED fitting errors, systematic effects, the inherent degeneracies and correlated errors), we formulated different simulated galaxy catalogs to quantify these effects individually. We studied the sensitivity of stellar mass estimates to the codes/methods used, population synthesis models, star formation histories, nebular emission line contributions, photometric uncertainties, extinction and age. For each simulated galaxy, the difference between the input stellar masses and those estimated using different simulation catalogs, Δlog(M)\Delta\log(M), was calculated and used to identify the most fundamental parameters affecting stellar masses. We measured different components of the error budget, with the results listed as follows: (1). no significant bias was found among different codes/methods, with all having comparable scatter; (2). A source of error is found to be due to photometric uncertainties and low resolution in age and extinction grids; (3). The median of stellar masses among different methods provides a stable measure of the mass associated with any given galaxy; (4). The deviations in stellar mass strongly correlate with those in age, with a weaker correlation with extinction; (5). the scatter in the stellar masses due to free parameters are quantified, with the sensitivity of the stellar mass to both the population synthesis codes and inclusion of nebular emission lines studied.Comment: 33 pages, 20 Figures, Accepted for publication in Astrophysical Journa

    CANDELS Multi-wavelength Catalogs: Source Detection and Photometry in the GOODS-South Field

    Get PDF
    We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5σ\sigma limiting depth (within an aperture of radius 0.17 arcsec) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 μ\mum) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10^{10}M_\odot at a 50% completeness level to z\sim3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z\sim2--4 via the Balmer break. It is also used to study the color--magnitude diagram of galaxies at 0<z<4.Comment: The full resolution article is now published in ApJS (2013, 207, 24). 22 pages, 21 figures, and 5 tables. The catalogue is available on the CANDELS website: http://candels.ucolick.org/data_access/GOODS-S.html MAST: http://archive.stsci.edu/prepds/candels and Rainbow Database: https://arcoiris.ucolick.org/Rainbow_navigator_public and https://rainbowx.fis.ucm.es/Rainbow_navigator_publi

    Intranasal sufentanil versus intravenous morphine for acute severe trauma pain: A double-blind randomized non-inferiority study.

    Get PDF
    BACKGROUND: Intravenous morphine (IVM) is the most common strong analgesic used in trauma, but is associated with a clear time limitation related to the need to obtain an access route. The intranasal (IN) route provides easy administration with a fast peak action time due to high vascularization and the absence of first-pass metabolism. We aimed to determine whether IN sufentanil (INS) for patients presenting to an emergency department with acute severe traumatic pain results in a reduction in pain intensity non-inferior to IVM. METHODS AND FINDINGS: In a prospective, randomized, multicenter non-inferiority trial conducted in the emergency departments of 6 hospitals across France, patients were randomized 1:1 to INS titration (0.3 μg/kg and additional doses of 0.15 μg/kg at 10 minutes and 20 minutes if numerical pain rating scale [NRS] > 3) and intravenous placebo, or to IVM (0.1 mg/kg and additional doses of 0.05 mg/kg at 10 minutes and 20 minutes if NRS > 3) and IN placebo. Patients, clinical staff, and research staff were blinded to the treatment allocation. The primary endpoint was the total decrease on NRS at 30 minutes after first administration. The prespecified non-inferiority margin was -1.3 on the NRS. The primary outcome was analyzed per protocol. Adverse events were prospectively recorded during 4 hours. Among the 194 patients enrolled in the emergency department cohort between November 4, 2013, and April 10, 2016, 157 were randomized, and the protocol was correctly administered in 136 (69 IVM group, 67 INS group, per protocol population, 76% men, median age 40 [IQR 29 to 54] years). The mean difference between NRS at first administration and NRS at 30 minutes was -4.1 (97.5% CI -4.6 to -3.6) in the IVM group and -5.2 (97.5% CI -5.7 to -4.6) in the INS group. Non-inferiority was demonstrated (p < 0.001 with 1-sided mean-equivalence t test), as the lower 97.5% confidence interval of 0.29 (97.5% CI 0.29 to 1.93) was above the prespecified margin of -1.3. INS was superior to IVM (intention to treat analysis: p = 0.034), but without a clinically significant difference in mean NRS between groups. Six severe adverse events were observed in the INS group and 2 in the IVM group (number needed to harm: 17), including an apparent imbalance for hypoxemia (3 in the INS group versus 1 in the IVM group) and for bradypnea (2 in the INS group versus 0 in the IVM group). The main limitation of the study was that the choice of concomitant analgesics, when they were used, was left to the discretion of the physician in charge, and co-analgesia was more often used in the IVM group. Moreover, the size of the study did not allow us to conclude with certainty about the safety of INS in emergency settings. CONCLUSIONS: We confirm the non-inferiority of INS compared to IVM for pain reduction at 30 minutes after administration in patients with severe traumatic pain presenting to an emergency department. The IN route, with no need to obtain a venous route, may allow early and effective analgesia in emergency settings and in difficult situations. Confirmation of the safety profile of INS will require further larger studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT02095366. EudraCT 2013-001665-16

    The Kinematics of Massive Quiescent Galaxies at 1.4 < z < 2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies

    Get PDF
    We study the dynamical properties of massive quiescent galaxies at 1.4 <z <2.1 using deep Hubble Space Telescope WFC3/F160W imaging and a combination of literature stellar velocity dispersion measurements and new near-infrared spectra obtained using the K-band Multi Object Spectrograph(KMOS) on the ESO Very Large Telescope. We use these data to show that the typical dynamical-to-stellar mass ratio has increased by∼0.2 dex from z = 2 to the present day, and we investigate this evolution in the context of possible changes in the stellar initial mass function(IMF) and/or fraction of dark matter contained within the galaxy effective radius,fDM[<re]. Comparing our high-redshift sample to their likely descendants at low redshift, we find that fDM[<re] has increased by a factor of more than 4 since z ≈ 1.8, from fDM[<re] = 6.6% +-1.0% to∼24%. The observed increase appears robust to changes in the methods used to estimate dynamical masses or match progenitors and descendants. We quantify possible variation of the stellar IMF through the offset parameter α, defined as the ratio of dynamical mass in stars to the stellar mass estimated using a Chabrier IMF. We demonstrate that the correlation between stellar velocity dispersion and α reported among quiescent galaxies at low redshift is already in place atz = 2, and we argue that subsequent evolution through (mostly minor) merging should act to preserve this relation while contributing significantly to galaxies'overall growth in size and stellar mass.J.T.M. acknowledges the support of the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project No. CE170100013. D.J.W. and M.F. acknowledge the support of the Deutsche Forschungsgemeinschaft via Project IDs 3871/1-1 and 3871/1-2. M.F. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 757535)

    Galaxy Zoo: CANDELS barred discs and bar fractions

    Get PDF
    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio

    A large-scale galaxy structure at z = 2.02 associated with the radio galaxy MRC 0156-252

    Get PDF
    We present the spectroscopic confirmation of a structure of galaxies surrounding the radio galaxy MRC 0156-252 at z = 2.02. The structure was initially discovered as an overdensity of both near-infrared selected z > 1.6 and mid-infrared selected z > 1.2 galaxy candidates. We used the VLT/FORS2 multi-object spectrograph to target ~80 high-redshift galaxy candidates, and obtain robust spectroscopic redshifts for more than half the targets. The majority of the confirmed sources are star-forming galaxies at z > 1.5. In addition to the radio galaxy, two of its close-by companions (<6″) also show AGN signatures. Ten sources, including the radio galaxy, lie within | z − 2.020 | <0.015 (i.e., velocity offsets <1500 km s^-1) and within projected 2 Mpc comoving of the radio galaxy. Additional evidence suggests not only that the galaxy structure associated with MRC 0156-252 is a forming galaxy cluster but also that this structure is most probably embedded in a larger-scale structure
    corecore