348 research outputs found

    A Lattice Study of the Nucleon Excited States with Domain Wall Fermions

    Get PDF
    We present results of our numerical calculation of the mass spectrum for isospin one-half and spin one-half non-strange baryons, i.e. the ground and excited states of the nucleon, in quenched lattice QCD. We use a new lattice discretization scheme for fermions, domain wall fermions, which possess almost exact chiral symmetry at non-zero lattice spacing. We make a systematic investigation of the negative-parity N∗N^* spectrum by using two distinct interpolating operators at ÎČ=6/g2=6.0\beta=6/g^2=6.0 on a 163×32×1616^3 \times 32 \times 16 lattice. The mass estimates extracted from the two operators are consistent with each other. The observed large mass splitting between this state, N∗(1535)N^*(1535), and the positive-parity ground state, the nucleon N(939), is well reproduced by our calculations. We have also calculated the mass of the first positive-parity excited state and found that it is heavier than the negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for publication in Phys. Rev.

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)−Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), ab−ab-plane (ρab\rho_{ab}) and c−c-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the b−b-axis for Pb(0.4)−Pb(0.4)-doped Bi(Pb)−Bi(Pb)-2212 is dominantly of Pb−Pb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower c−c-axis resistivity and a resistivity minimum at 80−13080-130K. He-annealed samples exhibit a much higher c−c-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)−Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=−kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=−kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Iron isotope systematics in estuaries : the case of North River, Massachusetts (USA)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 73 (2009): 4045-4059, doi:10.1016/j.gca.2009.04.026.Recent studies have suggested that rivers may present an isotopically light Fe source to the oceans. Since the input of dissolved iron from river water is generally controlled by flocculation processes that occur during estuarine mixing, it is important to investigate potential fractionation of Fe-isotopes during this process. In this study, we investigate the influence of the flocculation of Fe-rich colloids on the iron isotope composition of pristine estuarine waters and suspended particles. The samples were collected along a salinity gradient from the fresh water to the ocean in the North River estuary (MA, USA). Estuarine samples were filtered at 0.22 ÎŒm and the iron isotope composition of the two fractions (dissolved and particles) were analyzed using high resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive ÎŽ56Fe values (with an average of 0.43 ± 0.04 ‰) relative to the IRMM-14 standard and do not display any relationships with salinity or with percentage of colloid flocculation. The iron isotopic composition of the particles suspended in fresh water is characterized by more negative ÎŽ56Fe values than for dissolved Fe and correlate with the percentage of Fe flocculation. Particulate ÎŽ56Fe values vary from -0.09‰ at no flocculation to ~ 0.1‰ at the flocculation maximum, which reflect mixing effects between river-borne particles, lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe pool, we suggest that the pristine iron isotope composition of fresh water is preserved during estuarine mixing and that the value of the global riverine source into the ocean can be identified from the fresh water values. However, this study also suggests that ÎŽ56Fe composition of rivers can also be characterized by more positive ÎŽ56Fe values (up to 0.3 per mil) relative to the crust than previously reported. In order to improve our current understanding of the oceanic iron isotope cycling, further work is now required to determine the processes controlling the fractionation of Fe isotopes during continental run-off.This study was supported by the National Science Foundation (OCE 0550066) to O. Rouxel and Edward Sholkovitz

    Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest

    Full text link
    Zr-containing metal organic frameworks (MOFs) formed by terephthalate (UiO-66) and 2-aminoterephthalate ligands (UiO-66-NH2) are active and stable catalysts for the acid catalyzed esterification of various saturated and unsaturated fatty acids with MeOH and EtOH, with activities comparable (in some cases superior) to other solid acid catalysts previously reported in literature. Besides the formation of the corresponding fatty acid alkyl esters as biodiesel compounds (FAMEs and FAEEs), esterification of biomass-derived fatty acids with other alcohols catalyzed by the Zr-MOFs allows preparing other compounds of interest, such as oleyl oleate or isopropyl palmitate, with good yields under mild conditions.Financial support from the Consolider-Ingenio 2010 (project MULTICAT), the Severo Ochoa program, and the Spanish Ministry of Science and Innovation (project MAT2011-29020-C02-01) is gratefully acknowledged.García Cirujano, F.; Corma Canós, A.; Llabrés I Xamena, FX. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today. 257:213-220. https://doi.org/10.1016/j.cattod.2014.08.015S21322025

    Measurement of the CP-Violating Asymmetry Amplitude sin2ÎČ\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    A search for the decay B+→K+ΜΜˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+→K+ΜΜˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb−1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+→K+ΜΜˉ)<5.2×10−5{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+→π+ΜΜˉ)<1.0×10−4{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
    • 

    corecore