349 research outputs found
A Lattice Study of the Nucleon Excited States with Domain Wall Fermions
We present results of our numerical calculation of the mass spectrum for
isospin one-half and spin one-half non-strange baryons, i.e. the ground and
excited states of the nucleon, in quenched lattice QCD. We use a new lattice
discretization scheme for fermions, domain wall fermions, which possess almost
exact chiral symmetry at non-zero lattice spacing. We make a systematic
investigation of the negative-parity spectrum by using two distinct
interpolating operators at on a
lattice. The mass estimates extracted from the two operators are consistent
with each other. The observed large mass splitting between this state,
, and the positive-parity ground state, the nucleon N(939), is well
reproduced by our calculations. We have also calculated the mass of the first
positive-parity excited state and found that it is heavier than the
negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for
publication in Phys. Rev.
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
Z^* Resonances: Phenomenology and Models
We explore the phenomenology of, and models for, the Z^* resonances, the
lowest of which is now well established, and called the Theta. We provide an
overview of three models which have been proposed to explain its existence
and/or its small width, and point out other relevant predictions, and potential
problems, for each. The relation to what is known about KN scattering,
including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Iron isotope systematics in estuaries : the case of North River, Massachusetts (USA)
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 73 (2009): 4045-4059, doi:10.1016/j.gca.2009.04.026.Recent studies have suggested that rivers may present an isotopically light Fe
source to the oceans. Since the input of dissolved iron from river water is generally
controlled by flocculation processes that occur during estuarine mixing, it is important to
investigate potential fractionation of Fe-isotopes during this process. In this study, we
investigate the influence of the flocculation of Fe-rich colloids on the iron isotope
composition of pristine estuarine waters and suspended particles. The samples were
collected along a salinity gradient from the fresh water to the ocean in the North River
estuary (MA, USA). Estuarine samples were filtered at 0.22 ÎŒm and the iron isotope
composition of the two fractions (dissolved and particles) were analyzed using high
resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive
ÎŽ56Fe values (with an average of 0.43 ± 0.04 â°) relative to the IRMM-14 standard and do
not display any relationships with salinity or with percentage of colloid flocculation. The
iron isotopic composition of the particles suspended in fresh water is characterized by
more negative ÎŽ56Fe values than for dissolved Fe and correlate with the percentage of Fe
flocculation. Particulate ÎŽ56Fe values vary from -0.09â° at no flocculation to ~ 0.1â° at
the flocculation maximum, which reflect mixing effects between river-borne particles,
lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since
the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe
pool, we suggest that the pristine iron isotope composition of fresh water is preserved
during estuarine mixing and that the value of the global riverine source into the ocean can
be identified from the fresh water values. However, this study also suggests that ÎŽ56Fe
composition of rivers can also be characterized by more positive ÎŽ56Fe values (up to 0.3
per mil) relative to the crust than previously reported. In order to improve our current
understanding of the oceanic iron isotope cycling, further work is now required to
determine the processes controlling the fractionation of Fe isotopes during continental
run-off.This study was supported by the National Science Foundation (OCE 0550066) to O. Rouxel and Edward Sholkovitz
Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest
Zr-containing metal organic frameworks (MOFs) formed by terephthalate (UiO-66) and 2-aminoterephthalate ligands (UiO-66-NH2) are active and stable catalysts for the acid catalyzed esterification of various saturated and unsaturated fatty acids with MeOH and EtOH, with activities comparable (in some cases superior) to other solid acid catalysts previously reported in literature. Besides the formation of the corresponding fatty acid alkyl esters as biodiesel compounds (FAMEs and FAEEs), esterification of biomass-derived fatty acids with other alcohols catalyzed by the Zr-MOFs allows preparing other compounds of interest, such as oleyl oleate or isopropyl palmitate, with good yields under mild conditions.Financial support from the Consolider-Ingenio 2010 (project MULTICAT), the Severo Ochoa program, and the Spanish Ministry of Science and Innovation (project MAT2011-29020-C02-01) is gratefully acknowledged.GarcĂa Cirujano, F.; Corma CanĂłs, A.; LlabrĂ©s I Xamena, FX. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today. 257:213-220. https://doi.org/10.1016/j.cattod.2014.08.015S21322025
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
We report on the realization of a high quality distributed Bragg reflector
with both high and low refractive index layers lattice matched to ZnTe. Our
structure is grown by molecular beam epitaxy and is based on binary compounds
only. The high refractive index layer is made of ZnTe, while the low index
material is made of a short period triple superlattice containing MgSe, MgTe,
and ZnTe. The high refractive index step of Delta_n=0.5 in the structure
results in a broad stopband and the reflectivity coefficient exceeding 99% for
only 15 Bragg pairs.Comment: 4 pages, 3 figure
- âŠ