768 research outputs found

    Recent Experimental Tests of Special Relativity

    Full text link
    We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT) experiment, which tests Lorentz invariance in the photon sector, and report first results of our ongoing atomic clock test of Lorentz invariance in the matter sector. The MM-KT experiment compares a cryogenic microwave resonator to a hydrogen maser, and has set the most stringent limit on a number of parameters in alternative theories to special relativity. We also report first results of a test of Lorentz invariance in the SME (Standard Model Extension) matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain clock. We describe the experiment together with the theoretical model and analysis. Recent experimental results are presented and we give a first estimate of components of the c~p\tilde{c}^p parameters of the SME matter sector. A full analysis of systematic effects is still in progress, and will be the subject of a future publication together with our final results. If confirmed, the present limits would correspond to first ever measurements of some c~p\tilde{c}^p components, and improvements by 11 and 14 orders of magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity - Will it survive the next 100 years ?", Proceedings, Potsdam, 200

    Influence of lasers propagation delay on the sensitivity of atom interferometers

    Get PDF
    In atom interferometers based on two photon transitions, the delay induced by the difference of the laser beams paths makes the interferometer sensitive to the fluctuations of the frequency of the lasers. We first study, in the general case, how the laser frequency noise affects the performance of the interferometer measurement. Our calculations are compared with the measurements performed on our cold atom gravimeter based on stimulated Raman transitions. We finally extend this study to the case of cold atom gradiometers.Comment: 17 pages, 6 figure

    First observation of feshbach resonances at very low magnetic field in a 133Cs fountain.

    No full text
    7 pagesOne of the main limitations of cesium atomic fountains has been the cold collision frequency shift. By using a method based on a transfer of population by adiabatic passage allowing to prepare cold atomic samples with a well defined ratio of atomic density as well as atom number the collisional shift is controlled at the 10E-3 of its value. A calibration of Zeeman sub-states contribution to the clock shift as a function of the field has been performed. Feshbach resonances have been observed for the first time at very low magnetic field and with a very good resolution. A Monte Carlo simulation has been performed and could fit properly some of experimental data. This constrains some parameters of the theory of collisions

    First observation of feshbach resonances at very low magnetic field in a 133Cs fountain

    Get PDF
    One of the main limitations of cesium atomic fountains has been the cold collision frequency shift. By using a method based on a transfer of population by adiabatic passage allowing to prepare cold atomic samples with a well defined ratio of atomic density as well as atom number the collisional shift is controlled at the 10E-3 of its value. A calibration of Zeeman sub-states contribution to the clock shift as a function of the field has been performed. Feshbach resonances have been observed for the first time at very low magnetic field and with a very good resolution. A Monte Carlo simulation has been performed and could fit properly some of experimental data. This constrains some parameters of the theory of collisions

    First observation of feshbach resonances at very low magnetic field in a 133Cs fountain

    Get PDF
    One of the main limitations of cesium atomic fountains has been the cold collision frequency shift. By using a method based on a transfer of population by adiabatic passage allowing to prepare cold atomic samples with a well defined ratio of atomic density as well as atom number the collisional shift is controlled at the 10E-3 of its value. A calibration of Zeeman sub-states contribution to the clock shift as a function of the field has been performed. Feshbach resonances have been observed for the first time at very low magnetic field and with a very good resolution. A Monte Carlo simulation has been performed and could fit properly some of experimental data. This constrains some parameters of the theory of collisions

    Radiation Damping in FRW Space-times with Different Topologies

    Get PDF
    We study the role played by the compactness and the degree of connectedness in the time evolution of the energy of a radiating system in the Friedmann-Robertson-Walker (FRW) space-times whose t=constt=const spacelike sections are the Euclidean 3-manifold R3{\cal R}^3 and six topologically non-equivalent flat orientable compact multiply connected Riemannian 3-manifolds. An exponential damping of the energy E(t)E(t) is present in the R3{\cal R}^3 case, whereas for the six compact flat 3-spaces it is found basically the same pattern for the evolution of the energy, namely relative minima and maxima occurring at different times (depending on the degree of connectedness) followed by a growth of E(t)E(t). Likely reasons for this divergent behavior of E(t)E(t) in these compact flat 3-manifolds are discussed and further developments are indicated. A misinterpretation of Wolf's results regarding one of the six orientable compact flat 3-manifolds is also indicated and rectified.Comment: 13 pages, RevTeX, 5 figures, To appear in Phys. Rev. D 15, vol. 57 (1998

    Cold atom Clocks and Applications

    Full text link
    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133^{133}Cs and 87^{87}Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6×1014τ1/21.6\times 10^{-14}\tau^{-1/2} where τ\tau is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2×10162\times 10^{-16} at 50,000sforthefirsttimeforprimarystandards.Inaddition,theseclocksrealizetheSIsecondwithanaccuracyof50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7\times 10^{-16},oneorderofmagnitudebelowthatofuncooleddevices.Inasecondpart,wedescribetestsofpossiblevariationsoffundamentalconstantsusing, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using ^{87}RbandRb and ^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure

    Synthesis and Characterization of Bidentate Isonitrile Iron Complexes

    Get PDF
    Divalent iron complexes trans-[FeBr2(BINC)2], [Cp*FeCl(BINC)] (Cp* = Me5C5) and [FeBr2(CNAr3NC)2] with chelat-ing bis(isonitrile) ligands BINC (bis(2-isocyanophenyl)phenylphosphonate) and CNAr3NC (2,2’’-diisocyano-3,5,3’’,5’’tetramethyl-1,1’:3’,1’’-terphenyl) have been prepared and characterized. Their subsequent reduction yields di- and trinuclear compounds [Fe3(BINC)6], [Cp*Fe(BINC)]2, [Fe(CNAr3NC)2]2 and [K(Et2O)]2[Fe(CNAr3NC)2]2. The molecular structures of all new species were determined by X-ray crystallography. The molecular structures are compared to related iron carbonyl complexes. The complexes were further characterized by NMR and IR spectroscopy, and the electrochemical properties of selected compounds were analyzed by UV-Vis-NIR spectroelectrochemistry

    Loss of the Actin Remodeler Eps8 Causes Intestinal Defects and Improved Metabolic Status in Mice

    Get PDF
    In a variety of organisms, including mammals, caloric restriction improves metabolic status and lowers the incidence of chronic-degenerative diseases, ultimately leading to increased lifespan. Here we show that knockout mice for Eps8, a regulator of actin dynamics, display reduced body weight, partial resistance to age- or diet-induced obesity, and overall improved metabolic status. Alteration in the liver gene expression profile, in behavior and metabolism point to a calorie restriction-like phenotype in Eps8 knockout mice. Additionally, and consistent with a calorie restricted metabolism, Eps8 knockout mice show increased lifespan. The metabolic alterations in Eps8 knockout mice correlated with a significant reduction in intestinal fat absorption presumably caused by a 25% reduction in intestinal microvilli length. Our findings implicate actin dynamics as a novel variable in the determination of longevity. Additionally, our observations suggest that subtle differences in energy balance can, over time, significantly affect bodyweight and metabolic status in mice

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
    corecore