156 research outputs found

    Copper-Silver alloy coated door handles as a potential antibacterial strategy in clinical settings

    Get PDF
    Coating surfaces with a copper-silver alloy in clinical settings can be an alternative or complementary antibacterial strategy to other existing technologies and disinfection interventions. A newly developed copper-silver alloy coating has a high antibacterial efficacy against common pathogenic bacteria in laboratory setups, and the purpose of this study is to determine the antibacterial efficacy of this copper-silvery alloy in real-world clinical settings. Two field trials were carried out at a private clinic and a wound care center. Door handles coated with the copper-silver alloy had a lower total aerobic plate count (1.3 ± 0.4 Log CFU/cm2 and 0.8 ± 0.3 Log CFU/cm2, CFU stands for Colony Forming Units) than the reference uncoated material on-site (2.4 ± 0.4 Log CFU/cm2 for the stainless steel and 1.7 ± 0.4 Log CFU/cm2 for the satin brass). The copper-silver alloy did not selectively reduce specific bacterial species. This study points to the possibility of a successful long-term implementation of the copper-silver alloy coating as an antibacterial strategy

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Water deuteration and ortho-to-para nuclear spin ratio of H 2

    Get PDF
    We investigate the water deuteration ratio and ortho-to-para nuclear spin ratio of H2 (OPR(H2)) during the formation and early evolution of a molecular cloud, following the scenario that accretion flows sweep and accumulate HI gas to form molecular clouds. We follow the physical evolution of post-shock materials using a one-dimensional shock model, with post-processing gas-ice chemistry simulations. This approach allows us to study the evolution of the OPR(H2) and water deuteration ratio without an arbitrary assumption concerning the initial molecular abundances, including the initial OPR(H2). When the conversion of hydrogen into H2 is almost complete, the OPR(H2) is already much smaller than the statistical value of three due to the spin conversion in the gas phase. As the gas accumulates, the OPR(H2) decreases in a non-equilibrium manner. We find that water ice can be deuterium-poor at the end of its main formation stage in the cloud, compared to water vapor observed in the vicinity of low-mass protostars where water ice is likely sublimated. If this is the case, the enrichment of deuterium in water should mostly occur at somewhat later evolutionary stages of star formation, i.e., cold prestellar/protostellar cores. The main mechanism to suppress water ice deuteration in the cloud is the cycle of photodissociation and reformation of water ice, which efficiently removes deuterium from water ice chemistry. The removal efficiency depends on the main formation pathway of water ice. The OPR(H2) plays a minor role in water ice deuteration at the main formation stage of water ice.Comment: Minor changes after language edition, including typo corrections in Eqs. (A.11) and (B.5) (Accepted for publication in A&A

    Entrepreneurs, Firms and Global Wealth Since 1850

    Full text link

    An assessment of the risk of Bt-cowpea to non-target organisms in West Africa

    Get PDF
    Cowpea (Vigna unguiculata Walp.) is the most economically important legume crop in arid regions of sub-Saharan Africa. Cowpea is grown primarily by subsistence farmers who consume the leaves, pods and grain on farm or sell grain in local markets. Processed cowpea foods such as akara (a deep-fat fried fritter) are popular in the rapidly expanding urban areas. Demand far exceeds production due, in part, to a variety of insect pests including, in particular, the lepidopteran legume pod borer (LPB) Maruca vitrata. Genetically engineered Bt-cowpea, based on cry1Ab (Event 709) and cry2Ab transgenes, is being developed for use in sub-Saharan Africa to address losses from the LBP. Before environmental release of transgenic cowpeas, the Bt Cry proteins they express need to be assessed for potential effects on non-target organisms, particularly arthropods. Presented here is an assessment of the potential effects of those Cry proteins expressed in cowpea for control of LPB. Based on the history of safe use of Bt proteins, as well as the fauna associated with cultivated and wild cowpea in sub-Saharan Africa results indicate negligible effects on non-target organisms
    corecore